|
ccgsl 2.7.2
C++wrappersforGnuScientificLibrary
|
This namespace is used for special functions that in GSL are prefixed gsl_sf.
More...
Namespaces | |
| namespace | airy |
| Namespace for Airy functions. | |
| namespace | bessel |
| Namespace for Bessel functions. | |
| namespace | coulomb |
Namespace for gsl_sf_coulomb functions. | |
| namespace | ellint |
| Namespace for elliptic integrals. | |
| namespace | hermite |
| Namespace for physicist Hermite polynomials. | |
| namespace | lambert |
| Lambert functions. | |
| namespace | legendre |
| Legendre functions. | |
| namespace | mathieu |
| Angular and radial Mathieu functions. | |
Typedefs | |
| typedef gsl_sf_result | result |
Typedef for gsl_sf_result. More... | |
| typedef gsl_sf_result_e10 | result_e10 |
Typedef for gsl_sf_result_e10. More... | |
Functions | |
| int | clausen_e (double const x, result &result) |
| C++ version of gsl_sf_clausen(). More... | |
| double | clausen (double const x) |
| C++ version of gsl_sf_clausen(). More... | |
| int | hydrogenicR_1_e (double const Z, double const r, result &result) |
| C++ version of gsl_sf_hydrogenicR_1(). More... | |
| double | hydrogenicR_1 (double const Z, double const r) |
| C++ version of gsl_sf_hydrogenicR_1(). More... | |
| int | hydrogenicR_e (int const n, int const l, double const Z, double const r, result &result) |
| C++ version of gsl_sf_hydrogenicR_e(). More... | |
| double | hydrogenicR (int const n, int const l, double const Z, double const r) |
| C++ version of gsl_sf_hydrogenicR(). More... | |
| int | coupling_3j_e (int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc, result &result) |
| C++ version of gsl_sf_coupling_3j(). More... | |
| double | coupling_3j (int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc) |
| C++ version of gsl_sf_coupling_3j(). More... | |
| int | coupling_6j_e (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, result &result) |
| C++ version of gsl_sf_coupling_6j_e(). More... | |
| double | coupling_6j (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf) |
| C++ version of gsl_sf_coupling_6j(). More... | |
| int | coupling_RacahW_e (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, result &result) |
| C++ version of gsl_sf_coupling_RacahW_e(). More... | |
| double | coupling_RacahW (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf) |
| C++ version of gsl_sf_coupling_RacahW(). More... | |
| int | coupling_9j_e (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji, result &result) |
| C++ version of gsl_sf_coupling_9j_e(). More... | |
| double | coupling_9j (int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji) |
| C++ version of gsl_sf_coupling_9j(). More... | |
| int | dawson_e (double x, result &result) |
| C++ version of gsl_sf_dawson_e(). More... | |
| double | dawson (double x) |
| C++ version of gsl_sf_dawson(). More... | |
| int | debye_1_e (double const x, result &result) |
| C++ version of gsl_sf_debye_1_e(). More... | |
| double | debye_1 (double const x) |
| C++ version of gsl_sf_debye_1(). More... | |
| int | debye_2_e (double const x, result &result) |
| C++ version of gsl_sf_debye_2_e(). More... | |
| double | debye_2 (double const x) |
| C++ version of gsl_sf_debye_2(). More... | |
| int | debye_3_e (double const x, result &result) |
| C++ version of gsl_sf_debye_3_e(). More... | |
| double | debye_3 (double const x) |
| C++ version of gsl_sf_debye_3(). More... | |
| int | debye_4_e (double const x, result &result) |
| C++ version of gsl_sf_debye_4_e(). More... | |
| double | debye_4 (double const x) |
| C++ version of gsl_sf_debye_4(). More... | |
| int | debye_5_e (double const x, result &result) |
| C++ version of gsl_sf_debye_5_e(). More... | |
| double | debye_5 (double const x) |
| C++ version of gsl_sf_debye_5(). More... | |
| int | debye_6_e (double const x, result &result) |
| C++ version of gsl_sf_debye_6_e(). More... | |
| double | debye_6 (double const x) |
| C++ version of gsl_sf_debye_6(). More... | |
| int | dilog_e (double x, result &result) |
| C++ version of gsl_sf_dilog(). More... | |
| double | dilog (double const x) |
| C++ version of gsl_sf_dilog(). More... | |
| int | complex_dilog_xy_e (double const x, double const y, result &result_re, result &result_im) |
| C++ version of gsl_sf_complex_dilog_xy_e(). More... | |
| int | complex_dilog_e (double const r, double const theta, result &result_re, result &result_im) |
| C++ version of gsl_sf_complex_dilog_e(). More... | |
| int | complex_spence_xy_e (double const x, double const y, result &real_sp, result &imag_sp) |
| C++ version of gsl_sf_complex_spence_xy_e(). More... | |
| int | multiply_e (double const x, double const y, result &result) |
| C++ version of gsl_sf_multiply_e(). More... | |
| double | multiply (double const x, double const y) |
| C++ version of gsl_sf_multiply(). More... | |
| int | multiply_err_e (double const x, double const dx, double const y, double const dy, result &result) |
| C++ version of gsl_sf_multiply_err_e(). More... | |
| int | elljac_e (double const u, double const m, double &sn, double &cn, double &dn) |
| C++ version of gsl_sf_elljac_e(). More... | |
| int | erfc_e (double x, result &result) |
| C++ version of gsl_sf_erfc_e(). More... | |
| double | erfc (double x) |
| C++ version of gsl_sf_erfc(). More... | |
| int | log_erfc_e (double x, result &result) |
| C++ version of gsl_sf_log_erfc_e(). More... | |
| double | log_erfc (double x) |
| C++ version of gsl_sf_log_erfc(). More... | |
| int | erf_e (double x, result &result) |
| C++ version of gsl_sf_erf_e(). More... | |
| double | erf (double x) |
| C++ version of gsl_sf_erf(). More... | |
| int | erf_Z_e (double x, result &result) |
| C++ version of gsl_sf_erf_Z_e(). More... | |
| int | erf_Q_e (double x, result &result) |
| C++ version of gsl_sf_erf_Q_e(). More... | |
| double | erf_Z (double x) |
| C++ version of gsl_sf_erf_Z(). More... | |
| double | erf_Q (double x) |
| C++ version of gsl_sf_erf_Q(). More... | |
| int | hazard_e (double x, result &result) |
| C++ version of gsl_sf_hazard_e(). More... | |
| double | hazard (double x) |
| C++ version of gsl_sf_hazard(). More... | |
| int | exp_e (double x, result &result) |
| C++ version of gsl_sf_exp_e(). More... | |
| double | exp (double const x) |
| C++ version of gsl_sf_exp(). More... | |
| int | exp_e10_e (double const x, result_e10 &result) |
| C++ version of gsl_sf_exp_e10_e(). More... | |
| int | exp_mult_e (double const x, double const y, result &result) |
| C++ version of gsl_sf_exp_mult_e(). More... | |
| double | exp_mult (double const x, double const y) |
| C++ version of gsl_sf_exp_mult(). More... | |
| int | exp_mult_e10_e (double const x, double const y, result_e10 &result) |
| C++ version of gsl_sf_exp_mult_e10_e(). More... | |
| int | expm1_e (double const x, result &result) |
| C++ version of gsl_sf_expm1_e(). More... | |
| double | expm1 (double const x) |
| C++ version of gsl_sf_expm1(). More... | |
| int | exprel_e (double const x, result &result) |
| C++ version of gsl_sf_exprel_e(). More... | |
| double | exprel (double const x) |
| C++ version of gsl_sf_exprel(). More... | |
| int | exprel_2_e (double x, result &result) |
| C++ version of gsl_sf_exprel_2_e(). More... | |
| double | exprel_2 (double const x) |
| C++ version of gsl_sf_exprel_2(). More... | |
| int | exprel_n_e (int const n, double const x, result &result) |
| C++ version of gsl_sf_exprel_n_e(). More... | |
| double | exprel_n (int const n, double const x) |
| C++ version of gsl_sf_exprel_n(). More... | |
| int | exprel_n_CF_e (double const n, double const x, result &result) |
| C++ version of gsl_sf_exprel_n_CF_e(). More... | |
| int | exp_err_e (double const x, double const dx, result &result) |
| C++ version of gsl_sf_exp_err_e(). More... | |
| int | exp_err_e10_e (double const x, double const dx, result_e10 &result) |
| C++ version of gsl_sf_exp_err_e10_e(). More... | |
| int | exp_mult_err_e (double const x, double const dx, double const y, double const dy, result &result) |
| C++ version of gsl_sf_exp_mult_err_e(). More... | |
| int | exp_mult_err_e10_e (double const x, double const dx, double const y, double const dy, result_e10 &result) |
| C++ version of gsl_sf_exp_mult_err_e10_e(). More... | |
| int | expint_E1_e (double x, result &result) |
| C++ version of gsl_sf_expint_E1_e(). More... | |
| double | expint_E1 (double const x) |
| C++ version of gsl_sf_expint_E1(). More... | |
| int | expint_E2_e (double const x, result &result) |
| C++ version of gsl_sf_expint_E2_e(). More... | |
| double | expint_E2 (double const x) |
| C++ version of gsl_sf_expint_E2(). More... | |
| int | expint_En_e (int const n, double const x, result &result) |
| C++ version of gsl_sf_expint_En_e(). More... | |
| double | expint_En (int const n, double const x) |
| C++ version of gsl_sf_expint_En(). More... | |
| int | expint_E1_scaled_e (double const x, result &result) |
| C++ version of gsl_sf_expint_E1_scaled_e(). More... | |
| double | expint_E1_scaled (double const x) |
| C++ version of gsl_sf_expint_E1_scaled(). More... | |
| int | expint_E2_scaled_e (double const x, result &result) |
| C++ version of gsl_sf_expint_E2_scaled_e(). More... | |
| double | expint_E2_scaled (double const x) |
| C++ version of gsl_sf_expint_E2_scaled(). More... | |
| int | expint_En_scaled_e (int const n, double const x, result &result) |
| C++ version of gsl_sf_expint_En_scaled_e(). More... | |
| double | expint_En_scaled (int const n, double const x) |
| C++ version of gsl_sf_expint_En_scaled(). More... | |
| int | expint_Ei_e (double const x, result &result) |
| C++ version of gsl_sf_expint_Ei_e(). More... | |
| double | expint_Ei (double const x) |
| C++ version of gsl_sf_expint_Ei(). More... | |
| int | expint_Ei_scaled_e (double const x, result &result) |
| C++ version of gsl_sf_expint_Ei_scaled_e(). More... | |
| double | expint_Ei_scaled (double const x) |
| C++ version of gsl_sf_expint_Ei_scaled(). More... | |
| int | Shi_e (double const x, result &result) |
| C++ version of gsl_sf_Shi_e(). More... | |
| double | Shi (double const x) |
| C++ version of gsl_sf_Shi(). More... | |
| int | Chi_e (double const x, result &result) |
| C++ version of gsl_sf_Chi_e(). More... | |
| double | Chi (double const x) |
| C++ version of gsl_sf_Chi(). More... | |
| int | expint_3_e (double const x, result &result) |
| C++ version of gsl_sf_expint_3_e(). More... | |
| double | expint_3 (double x) |
| C++ version of gsl_sf_expint_3(). More... | |
| int | Si_e (double const x, result &result) |
| C++ version of gsl_sf_Si_e(). More... | |
| double | Si (double const x) |
| C++ version of gsl_sf_Si(). More... | |
| int | Ci_e (double const x, result &result) |
| C++ version of gsl_sf_Ci_e(). More... | |
| double | Ci (double const x) |
| C++ version of gsl_sf_Ci(). More... | |
| int | atanint_e (double const x, result &result) |
| C++ version of gsl_sf_atanint_e(). More... | |
| double | atanint (double const x) |
| C++ version of gsl_sf_atanint(). More... | |
| int | fermi_dirac_m1_e (double const x, result &result) |
| C++ version of gsl_sf_fermi_dirac_m1_e(). More... | |
| double | fermi_dirac_m1 (double const x) |
| C++ version of gsl_sf_fermi_dirac_m1(). More... | |
| int | fermi_dirac_0_e (double const x, result &result) |
| C++ version of gsl_sf_fermi_dirac_0_e(). More... | |
| double | fermi_dirac_0 (double const x) |
| C++ version of gsl_sf_fermi_dirac_0(). More... | |
| int | fermi_dirac_1_e (double const x, result &result) |
| C++ version of gsl_sf_fermi_dirac_1_e(). More... | |
| double | fermi_dirac_1 (double const x) |
| C++ version of gsl_sf_fermi_dirac_1(). More... | |
| int | fermi_dirac_2_e (double const x, result &result) |
| C++ version of gsl_sf_fermi_dirac_2_e(). More... | |
| double | fermi_dirac_2 (double const x) |
| C++ version of gsl_sf_fermi_dirac_2(). More... | |
| int | fermi_dirac_int_e (int const j, double const x, result &result) |
| C++ version of gsl_sf_fermi_dirac_int_e(). More... | |
| double | fermi_dirac_int (int const j, double const x) |
| C++ version of gsl_sf_fermi_dirac_int(). More... | |
| int | fermi_dirac_mhalf_e (double const x, result &result) |
| C++ version of gsl_sf_fermi_dirac_mhalf_e(). More... | |
| double | fermi_dirac_mhalf (double const x) |
| C++ version of gsl_sf_fermi_dirac_mhalf(). More... | |
| int | fermi_dirac_half_e (double const x, result &result) |
| C++ version of gsl_sf_fermi_dirac_half_e(). More... | |
| double | fermi_dirac_half (double const x) |
| C++ version of gsl_sf_fermi_dirac_half(). More... | |
| int | fermi_dirac_3half_e (double const x, result &result) |
| C++ version of gsl_sf_fermi_dirac_3half_e(). More... | |
| double | fermi_dirac_3half (double const x) |
| C++ version of gsl_sf_fermi_dirac_3half(). More... | |
| int | fermi_dirac_inc_0_e (double const x, double const b, result &result) |
| C++ version of gsl_sf_fermi_dirac_inc_0_e(). More... | |
| double | fermi_dirac_inc_0 (double const x, double const b) |
| C++ version of gsl_sf_fermi_dirac_inc_0(). More... | |
| int | lngamma_e (double x, result &result) |
| C++ version of gsl_sf_lngamma_e(). More... | |
| double | lngamma (double const x) |
| C++ version of gsl_sf_lngamma(). More... | |
| int | lngamma_sgn_e (double x, result &result_lg, double &sgn) |
| C++ version of gsl_sf_lngamma_sgn_e(). More... | |
| int | gamma_e (double const x, result &result) |
| C++ version of gsl_sf_gamma_e(). More... | |
| double | gamma (double const x) |
| C++ version of gsl_sf_gamma(). More... | |
| int | gammastar_e (double const x, result &result) |
| C++ version of gsl_sf_gammastar_e(). More... | |
| double | gammastar (double const x) |
| C++ version of gsl_sf_gammastar(). More... | |
| int | gammainv_e (double const x, result &result) |
| C++ version of gsl_sf_gammainv_e(). More... | |
| double | gammainv (double const x) |
| C++ version of gsl_sf_gammainv(). More... | |
| int | lngamma_complex_e (double zr, double zi, result &lnr, result &arg) |
| C++ version of gsl_sf_lngamma_complex_e(). More... | |
| int | taylorcoeff_e (int const n, double const x, result &result) |
| C++ version of gsl_sf_taylorcoeff_e(). More... | |
| double | taylorcoeff (int const n, double const x) |
| C++ version of gsl_sf_taylorcoeff(). More... | |
| int | fact_e (unsigned int const n, result &result) |
| C++ version of gsl_sf_fact_e(). More... | |
| double | fact (unsigned int const n) |
| C++ version of gsl_sf_fact(). More... | |
| int | doublefact_e (unsigned int const n, result &result) |
| C++ version of gsl_sf_doublefact_e(). More... | |
| double | doublefact (unsigned int const n) |
| C++ version of gsl_sf_doublefact(). More... | |
| int | lnfact_e (unsigned int const n, result &result) |
| C++ version of gsl_sf_lnfact_e(). More... | |
| double | lnfact (unsigned int const n) |
| C++ version of gsl_sf_lnfact(). More... | |
| int | lndoublefact_e (unsigned int const n, result &result) |
| C++ version of gsl_sf_lndoublefact_e(). More... | |
| double | lndoublefact (unsigned int const n) |
| C++ version of gsl_sf_lndoublefact(). More... | |
| int | lnchoose_e (unsigned int n, unsigned int m, result &result) |
| C++ version of gsl_sf_lnchoose_e(). More... | |
| double | lnchoose (unsigned int n, unsigned int m) |
| C++ version of gsl_sf_lnchoose(). More... | |
| int | choose_e (unsigned int n, unsigned int m, result &result) |
| C++ version of gsl_sf_choose_e(). More... | |
| double | choose (unsigned int n, unsigned int m) |
| C++ version of gsl_sf_choose(). More... | |
| int | lnpoch_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_lnpoch_e(). More... | |
| double | lnpoch (double const a, double const x) |
| C++ version of gsl_sf_lnpoch(). More... | |
| int | lnpoch_sgn_e (double const a, double const x, result &result, double &sgn) |
| C++ version of gsl_sf_lnpoch_sgn_e(). More... | |
| int | poch_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_poch_e(). More... | |
| double | poch (double const a, double const x) |
| C++ version of gsl_sf_poch(). More... | |
| int | pochrel_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_pochrel_e(). More... | |
| double | pochrel (double const a, double const x) |
| C++ version of gsl_sf_pochrel(). More... | |
| int | gamma_inc_Q_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_gamma_inc_Q_e(). More... | |
| double | gamma_inc_Q (double const a, double const x) |
| C++ version of gsl_sf_gamma_inc_Q(). More... | |
| int | gamma_inc_P_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_gamma_inc_P_e(). More... | |
| double | gamma_inc_P (double const a, double const x) |
| C++ version of gsl_sf_gamma_inc_P(). More... | |
| int | gamma_inc_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_gamma_inc_e(). More... | |
| double | gamma_inc (double const a, double const x) |
| C++ version of gsl_sf_gamma_inc(). More... | |
| int | lnbeta_e (double const a, double const b, result &result) |
| C++ version of gsl_sf_lnbeta_e(). More... | |
| double | lnbeta (double const a, double const b) |
| C++ version of gsl_sf_lnbeta(). More... | |
| int | lnbeta_sgn_e (double const x, double const y, result &result, double &sgn) |
| C++ version of gsl_sf_lnbeta_sgn_e(). More... | |
| int | beta_e (double const a, double const b, result &result) |
| C++ version of gsl_sf_beta_e(). More... | |
| double | beta (double const a, double const b) |
| C++ version of gsl_sf_beta(). More... | |
| int | beta_inc_e (double const a, double const b, double const x, result &result) |
| C++ version of gsl_sf_beta_inc_e(). More... | |
| double | beta_inc (double const a, double const b, double const x) |
| C++ version of gsl_sf_beta_inc(). More... | |
| int | gegenpoly_1_e (double lambda, double x, result &result) |
| C++ version of gsl_sf_gegenpoly_1_e(). More... | |
| int | gegenpoly_2_e (double lambda, double x, result &result) |
| C++ version of gsl_sf_gegenpoly_2_e(). More... | |
| int | gegenpoly_3_e (double lambda, double x, result &result) |
| C++ version of gsl_sf_gegenpoly_3_e(). More... | |
| double | gegenpoly_1 (double lambda, double x) |
| C++ version of gsl_sf_gegenpoly_1(). More... | |
| double | gegenpoly_2 (double lambda, double x) |
| C++ version of gsl_sf_gegenpoly_2(). More... | |
| double | gegenpoly_3 (double lambda, double x) |
| C++ version of gsl_sf_gegenpoly_3(). More... | |
| int | gegenpoly_n_e (int n, double lambda, double x, result &result) |
| C++ version of gsl_sf_gegenpoly_n_e(). More... | |
| double | gegenpoly_n (int n, double lambda, double x) |
| C++ version of gsl_sf_gegenpoly_n(). More... | |
| template<typename DATA > | |
| int | gegenpoly_array (int nmax, double lambda, double x, DATA &result_array) |
| C++ version of gsl_sf_gegenpoly_array(). More... | |
| int | hyperg_0F1_e (double c, double x, result &result) |
| C++ version of gsl_sf_hyperg_0F1_e(). More... | |
| double | hyperg_0F1 (double const c, double const x) |
| C++ version of gsl_sf_hyperg_0F1(). More... | |
| int | hyperg_1F1_int_e (int const m, int const n, double const x, result &result) |
| C++ version of gsl_sf_hyperg_1F1_int_e(). More... | |
| double | hyperg_1F1_int (int const m, int const n, double x) |
| C++ version of gsl_sf_hyperg_1F1_int(). More... | |
| int | hyperg_1F1_e (double const a, double const b, double const x, result &result) |
| C++ version of gsl_sf_hyperg_1F1_e(). More... | |
| double | hyperg_1F1 (double a, double b, double x) |
| C++ version of gsl_sf_hyperg_1F1(). More... | |
| int | hyperg_U_int_e (int const m, int const n, double const x, result &result) |
| C++ version of gsl_sf_hyperg_U_int_e(). More... | |
| double | hyperg_U_int (int const m, int const n, double const x) |
| C++ version of gsl_sf_hyperg_U_int(). More... | |
| int | hyperg_U_int_e10_e (int const m, int const n, double const x, result_e10 &result) |
| C++ version of gsl_sf_hyperg_U_int_e10_e(). More... | |
| int | hyperg_U_e (double const a, double const b, double const x, result &result) |
| C++ version of gsl_sf_hyperg_U_e(). More... | |
| double | hyperg_U (double const a, double const b, double const x) |
| C++ version of gsl_sf_hyperg_U(). More... | |
| int | hyperg_U_e10_e (double const a, double const b, double const x, result_e10 &result) |
| C++ version of gsl_sf_hyperg_U_e10_e(). More... | |
| int | hyperg_2F1_e (double a, double b, double const c, double const x, result &result) |
| C++ version of gsl_sf_hyperg_2F1_e(). More... | |
| double | hyperg_2F1 (double a, double b, double c, double x) |
| C++ version of gsl_sf_hyperg_2F1(). More... | |
| int | hyperg_2F1_conj_e (double const aR, double const aI, double const c, double const x, result &result) |
| C++ version of gsl_sf_hyperg_2F1_conj_e(). More... | |
| double | hyperg_2F1_conj (double aR, double aI, double c, double x) |
| C++ version of gsl_sf_hyperg_2F1_conj(). More... | |
| int | hyperg_2F1_renorm_e (double const a, double const b, double const c, double const x, result &result) |
| C++ version of gsl_sf_hyperg_2F1_renorm_e(). More... | |
| double | hyperg_2F1_renorm (double a, double b, double c, double x) |
| C++ version of gsl_sf_hyperg_2F1_renorm(). More... | |
| int | hyperg_2F1_conj_renorm_e (double const aR, double const aI, double const c, double const x, result &result) |
| C++ version of gsl_sf_hyperg_2F1_conj_renorm_e(). More... | |
| double | hyperg_2F1_conj_renorm (double aR, double aI, double c, double x) |
| C++ version of gsl_sf_hyperg_2F1_conj_renorm(). More... | |
| int | hyperg_2F0_e (double const a, double const b, double const x, result &result) |
| C++ version of gsl_sf_hyperg_2F0_e(). More... | |
| double | hyperg_2F0 (double const a, double const b, double const x) |
| C++ version of gsl_sf_hyperg_2F0(). More... | |
| int | laguerre_1_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_laguerre_1_e(). More... | |
| int | laguerre_2_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_laguerre_2_e(). More... | |
| int | laguerre_3_e (double const a, double const x, result &result) |
| C++ version of gsl_sf_laguerre_3_e(). More... | |
| double | laguerre_1 (double a, double x) |
| C++ version of gsl_sf_laguerre_1(). More... | |
| double | laguerre_2 (double a, double x) |
| C++ version of gsl_sf_laguerre_2(). More... | |
| double | laguerre_3 (double a, double x) |
| C++ version of gsl_sf_laguerre_3(). More... | |
| int | laguerre_n_e (int const n, double const a, double const x, result &result) |
| C++ version of gsl_sf_laguerre_n_e(). More... | |
| double | laguerre_n (int n, double a, double x) |
| C++ version of gsl_sf_laguerre_n(). More... | |
| int | conicalP_half_e (double const lambda, double const x, result &result) |
| double | conicalP_half (double const lambda, double const x) |
| C++ version of gsl_sf_conicalP_half(). More... | |
| int | conicalP_mhalf_e (double const lambda, double const x, result &result) |
| C++ version of gsl_sf_conicalP_mhalf_e(). More... | |
| double | conicalP_mhalf (double const lambda, double const x) |
| C++ version of gsl_sf_conicalP_mhalf(). More... | |
| int | conicalP_0_e (double const lambda, double const x, result &result) |
| C++ version of gsl_sf_conicalP_0_e(). More... | |
| double | conicalP_0 (double const lambda, double const x) |
| C++ version of gsl_sf_conicalP_0(). More... | |
| int | conicalP_1_e (double const lambda, double const x, result &result) |
| C++ version of gsl_sf_conicalP_1_e(). More... | |
| double | conicalP_1 (double const lambda, double const x) |
| C++ version of gsl_sf_conicalP_1(). More... | |
| int | conicalP_sph_reg_e (int const l, double const lambda, double const x, result &result) |
| C++ version of gsl_sf_conicalP_sph_reg_e(). More... | |
| double | conicalP_sph_reg (int const l, double const lambda, double const x) |
| C++ version of gsl_sf_conicalP_sph_reg(). More... | |
| int | conicalP_cyl_reg_e (int const m, double const lambda, double const x, result &result) |
| C++ version of gsl_sf_conicalP_cyl_reg_e(). More... | |
| double | conicalP_cyl_reg (int const m, double const lambda, double const x) |
| C++ version of gsl_sf_conicalP_cyl_reg(). More... | |
| int | log_e (double const x, result &result) |
| C++ version of gsl_sf_log_e(). More... | |
| double | log (double const x) |
| C++ version of gsl_sf_log(). More... | |
| int | log_abs_e (double const x, result &result) |
| C++ version of gsl_sf_log_abs_e(). More... | |
| double | log_abs (double const x) |
| C++ version of gsl_sf_log_abs(). More... | |
| int | complex_log_e (double const zr, double const zi, result &lnr, result &theta) |
| C++ version of gsl_sf_complex_log_e(). More... | |
| int | log_1plusx_e (double const x, result &result) |
| C++ version of gsl_sf_log_1plusx_e(). More... | |
| double | log_1plusx (double const x) |
| C++ version of gsl_sf_log_1plusx(). More... | |
| int | log_1plusx_mx_e (double const x, result &result) |
| C++ version of gsl_sf_log_1plusx_mx_e(). More... | |
| double | log_1plusx_mx (double const x) |
| C++ version of gsl_sf_log_1plusx_mx(). More... | |
| int | pow_int_e (double x, int n, result &result) |
| C++ version of gsl_sf_pow_int_e(). More... | |
| double | pow_int (double const x, int const n) |
| C++ version of gsl_sf_pow_int(). More... | |
| int | psi_int_e (int const n, result &result) |
| C++ version of gsl_sf_psi_int_e(). More... | |
| double | psi_int (int const n) |
| C++ version of gsl_sf_psi_int(). More... | |
| int | psi_e (double const x, result &result) |
| C++ version of gsl_sf_psi_e(). More... | |
| double | psi (double const x) |
| C++ version of gsl_sf_psi(). More... | |
| int | psi_1piy_e (double const y, result &result) |
| C++ version of gsl_sf_psi_1piy_e(). More... | |
| double | psi_1piy (double const y) |
| C++ version of gsl_sf_psi_1piy(). More... | |
| int | complex_psi_e (double const x, double const y, result &result_re, result &result_im) |
| C++ version of gsl_sf_complex_psi_e(). More... | |
| int | psi_1_int_e (int const n, result &result) |
| C++ version of gsl_sf_psi_1_int_e(). More... | |
| double | psi_1_int (int const n) |
| C++ version of gsl_sf_psi_1_int(). More... | |
| int | psi_1_e (double const x, result &result) |
| C++ version of gsl_sf_psi_1_e(). More... | |
| double | psi_1 (double const x) |
| C++ version of gsl_sf_psi_1(). More... | |
| int | psi_n_e (int const n, double const x, result &result) |
| C++ version of gsl_sf_psi_n_e(). More... | |
| double | psi_n (int const n, double const x) |
| C++ version of gsl_sf_psi_n(). More... | |
| int | result_smash_e (gsl_sf_result_e10 const &re, gsl_sf_result &r) |
| C++ version of gsl_sf_result_smash_e(). More... | |
| int | sin_pi_e (double x, result &result) |
| C++ version of gsl_sf_sin_pi_e(). More... | |
| double | sin_pi (double const x) |
| C++ version of gsl_sf_sin_pi(). More... | |
| int | cos_pi_e (double x, result &result) |
| C++ version of gsl_sf_cos_pi_e(). More... | |
| double | cos_pi (double const x) |
| C++ version of gsl_sf_cos_pi(). More... | |
| int | synchrotron_1_e (double const x, result &result) |
| C++ version of gsl_sf_synchrotron_1_e(). More... | |
| double | synchrotron_1 (double const x) |
| C++ version of gsl_sf_synchrotron_1(). More... | |
| int | synchrotron_2_e (double const x, result &result) |
| C++ version of gsl_sf_synchrotron_2_e(). More... | |
| double | synchrotron_2 (double const x) |
| C++ version of gsl_sf_synchrotron_2(). More... | |
| int | transport_2_e (double const x, result &result) |
| C++ version of gsl_sf_transport_2_e(). More... | |
| double | transport_2 (double const x) |
| C++ version of gsl_sf_transport_2(). More... | |
| int | transport_3_e (double const x, result &result) |
| C++ version of gsl_sf_transport_3_e(). More... | |
| double | transport_3 (double const x) |
| C++ version of gsl_sf_transport_3(). More... | |
| int | transport_4_e (double const x, result &result) |
| C++ version of gsl_sf_transport_4_e(). More... | |
| double | transport_4 (double const x) |
| C++ version of gsl_sf_transport_4(). More... | |
| int | transport_5_e (double const x, result &result) |
| C++ version of gsl_sf_transport_5_e(). More... | |
| double | transport_5 (double const x) |
| C++ version of gsl_sf_transport_5(). More... | |
| int | sin_e (double x, result &result) |
| C++ version of gsl_sf_sin_e(). More... | |
| double | sin (double const x) |
| C++ version of gsl_sf_sin(). More... | |
| int | cos_e (double x, result &result) |
| C++ version of gsl_sf_cos_e(). More... | |
| double | cos (double const x) |
| C++ version of gsl_sf_cos(). More... | |
| int | hypot_e (double const x, double const y, result &result) |
| C++ version of gsl_sf_hypot_e(). More... | |
| double | hypot (double const x, double const y) |
| C++ version of gsl_sf_hypot(). More... | |
| int | complex_sin_e (double const zr, double const zi, result &szr, result &szi) |
| C++ version of gsl_sf_complex_sin_e(). More... | |
| int | complex_cos_e (double const zr, double const zi, result &czr, result &czi) |
| C++ version of gsl_sf_complex_cos_e(). More... | |
| int | complex_logsin_e (double const zr, double const zi, result &lszr, result &lszi) |
| C++ version of gsl_sf_complex_logsin_e(). More... | |
| int | sinc_e (double x, result &result) |
| C++ version of gsl_sf_sinc_e(). More... | |
| double | sinc (double const x) |
| C++ version of gsl_sf_sinc(). More... | |
| int | lnsinh_e (double const x, result &result) |
| C++ version of gsl_sf_lnsinh_e(). More... | |
| double | lnsinh (double const x) |
| C++ version of gsl_sf_lnsinh(). More... | |
| int | lncosh_e (double const x, result &result) |
| C++ version of gsl_sf_lncosh_e(). More... | |
| double | lncosh (double const x) |
| C++ version of gsl_sf_lncosh(). More... | |
| int | polar_to_rect (double const r, double const theta, result &x, result &y) |
| C++ version of gsl_sf_polar_to_rect(). More... | |
| int | rect_to_polar (double const x, double const y, result &r, result &theta) |
| C++ version of gsl_sf_rect_to_polar(). More... | |
| int | sin_err_e (double const x, double const dx, result &result) |
| C++ version of gsl_sf_sin_err_e(). More... | |
| int | cos_err_e (double const x, double const dx, result &result) |
| C++ version of gsl_sf_cos_err_e(). More... | |
| int | angle_restrict_symm_e (double &theta) |
| C++ version of gsl_sf_angle_restrict_symm_e(). More... | |
| double | angle_restrict_symm (double const theta) |
| C++ version of gsl_sf_angle_restrict_symm(). More... | |
| int | angle_restrict_pos_e (double &theta) |
| C++ version of gsl_sf_angle_restrict_pos_e(). More... | |
| double | angle_restrict_pos (double const theta) |
| C++ version of gsl_sf_angle_restrict_pos(). More... | |
| int | angle_restrict_symm_err_e (double const theta, result &result) |
| C++ version of gsl_sf_angle_restrict_symm_err_e(). More... | |
| int | angle_restrict_pos_err_e (double const theta, result &result) |
| C++ version of gsl_sf_angle_restrict_pos_err_e(). More... | |
| int | zeta_int_e (int const n, result &result) |
| C++ version of gsl_sf_zeta_int_e(). More... | |
| double | zeta_int (int const n) |
| C++ version of gsl_sf_zeta_int(). More... | |
| int | zeta_e (double const s, result &result) |
| C++ version of gsl_sf_zeta_e(). More... | |
| double | zeta (double const s) |
| C++ version of gsl_sf_zeta(). More... | |
| int | zetam1_e (double const s, result &result) |
| C++ version of gsl_sf_zetam1_e(). More... | |
| double | zetam1 (double const s) |
| C++ version of gsl_sf_zetam1(). More... | |
| int | zetam1_int_e (int const s, result &result) |
| C++ version of gsl_sf_zetam1_int_e(). More... | |
| double | zetam1_int (int const s) |
| C++ version of gsl_sf_zetam1_int(). More... | |
| int | hzeta_e (double const s, double const q, result &result) |
| C++ version of gsl_sf_hzeta_e(). More... | |
| double | hzeta (double const s, double const q) |
| C++ version of gsl_sf_hzeta(). More... | |
| int | eta_int_e (int n, result &result) |
| C++ version of gsl_sf_eta_int_e(). More... | |
| double | eta_int (int const n) |
| C++ version of gsl_sf_eta_int(). More... | |
| int | eta_e (double const s, result &result) |
| C++ version of gsl_sf_eta_e(). More... | |
| double | eta (double const s) |
| C++ version of gsl_sf_eta(). More... | |
Variables | |
| double const | GAMMA_XMAX = GSL_SF_GAMMA_XMAX |
| The maximum x such that gamma(x) is not considered an overflow. More... | |
| double const | FACT_NMAX = GSL_SF_FACT_NMAX |
| The maximum n such that fact(n) does not give an overflow. More... | |
| double const | DOUBLEFACT_NMAX = GSL_SF_DOUBLEFACT_NMAX |
| The maximum n such that doublefact(n) does not give an overflow. More... | |
This namespace is used for special functions that in GSL are prefixed gsl_sf.
Note that many of these functions are placed in namespaces within sf. So, for example, gsl_sf_airy_Bi_deriv_e() becomes gsl::sf::airy::deriv_e(). However, other functions such as the trigonometric functions are contained directly in the sf namespace.
Many of the special functions are available in two forms. The first returns an integer indicating any error that occurred and returns the result as a gsl::sf::struct object. The second returns a double. In C++ the second may be preferred because we can use gsl::exception to cause these functions to throw an exception if any problem occurs.
| typedef gsl_sf_result gsl::sf::result |
Typedef for gsl_sf_result.
Definition at line 30 of file sf_result.hpp.
| typedef gsl_sf_result_e10 gsl::sf::result_e10 |
Typedef for gsl_sf_result_e10.
Definition at line 34 of file sf_result.hpp.
|
inline |
C++ version of gsl_sf_angle_restrict_pos().
Force an angle to lie in the range [0, 2pi)
| theta | A real value (angle) |
Definition at line 236 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_angle_restrict_pos_e().
Force an angle to lie in the range [0, 2pi)
| theta | A real value (angle) |
Definition at line 228 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_angle_restrict_pos_err_e().
| theta | A real value (angle) |
| result | The result as a gsl::sf::result object |
Definition at line 252 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_angle_restrict_symm().
Force an angle to lie in the range (-pi,pi].
| theta | A real value (angle) |
Definition at line 210 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_angle_restrict_symm_e().
Force an angle to lie in the range (-pi,pi].
| theta | A real value (angle) |
Definition at line 202 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_angle_restrict_symm_err_e().
| theta | A real value (angle) |
| result | The result as a gsl::sf::result object |
Definition at line 244 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_atanint().
AtanInt(x) := Integral[ Arctan[t]/t, {t,0,x}]
| x | A real number |
Definition at line 296 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_atanint_e().
AtanInt(x) := Integral[ Arctan[t]/t, {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 289 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_beta().
Beta Function B(a,b)
a > 0, b > 0
| a | A real number |
| b | A real number |
Definition at line 552 of file sf_gamma.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_beta_e().
Beta Function B(a,b)
a > 0, b > 0
| a | A real number |
| b | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 540 of file sf_gamma.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_beta_inc().
Normalized Incomplete Beta Function B_x(a,b)/B(a,b)
a > 0, b > 0, 0 <= x <= 1
| a | A real number |
| b | A real number |
| x | A real number |
Definition at line 578 of file sf_gamma.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_beta_inc_e().
Normalized Incomplete Beta Function B_x(a,b)/B(a,b)
a > 0, b > 0, 0 <= x <= 1
| a | A real number |
| b | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 565 of file sf_gamma.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_Chi().
Chi(x) := Re[ M_EULER + log(x) + Integrate[(Cosh[t]-1)/t, {t,0,x}] ]
x != 0.0
| x | A real number |
Definition at line 228 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_Chi_e().
Chi(x) := Re[ M_EULER + log(x) + Integrate[(Cosh[t]-1)/t, {t,0,x}] ]
x != 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 219 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_choose().
n choose m
| n | An integer |
| m | An integer |
Definition at line 279 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_choose_e().
n choose m
| n | An integer |
| m | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 270 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_Ci().
Ci(x) := -Integrate[ Cos[t]/t, {t,x,Infinity}]
x > 0.0
| x | A real number |
Definition at line 281 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_Ci_e().
Ci(x) := -Integrate[ Cos[t]/t, {t,x,Infinity}]
x > 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 272 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_clausen().
Calculate the Clausen integral: Cl_2(x) := Integrate[-Log[2 Sin[t/2]], {t,0,x}]
Relation to dilogarithm: Cl_2(theta) = Im[ Li_2(e^(i theta)) ]
| x | A real value |
x Definition at line 52 of file sf_clausen.hpp.
|
inline |
C++ version of gsl_sf_clausen().
Calculate the Clausen integral: Cl_2(x) := Integrate[-Log[2 Sin[t/2]], {t,0,x}]
Relation to dilogarithm: Cl_2(theta) = Im[ Li_2(e^(i theta)) ]
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 40 of file sf_clausen.hpp.
C++ version of gsl_sf_complex_cos_e().
| zr | Real part of a complex number |
| zi | Imaginary part of a complex number |
| czr | The real part of the result as a gsl::sf::result object |
| czi | The imaginary part of the result as a gsl::sf::result object |
Definition at line 89 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_complex_dilog_e().
DiLogarithm(z), for complex argument z = r Exp[i theta]. Computes the principal branch, thereby assuming an implicit reduction of theta to the range (-2 pi, 2 pi).
| r | A real number |
| theta | A real number |
| result_re | Real part of result as gsl::sf::result object |
| result_im | Imaginary part of result as gsl::sf::result object |
Definition at line 73 of file sf_dilog.hpp.
|
inline |
C++ version of gsl_sf_complex_dilog_xy_e().
DiLogarithm(z), for complex argument z = x + i y. Computes the principal branch.
| x | A real number |
| y | A real number |
| result_re | Real part of result as gsl::sf::result object |
| result_im | Imaginary part of result as gsl::sf::result object |
Definition at line 60 of file sf_dilog.hpp.
|
inline |
C++ version of gsl_sf_complex_log_e().
Complex Logarithm exp(lnr + I theta) = zr + I zi Returns argument in [-pi,pi].
| zr | Real part of a complex number |
| zi | Imaginary part of a complex number |
| lnr | The result (ln r) as a gsl::sf::result object |
| theta | The result (theta) as a gsl::sf::result object |
Definition at line 69 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_complex_logsin_e().
| zr | Real part of a complex number |
| zi | Imaginary part of a complex number |
| lszr | The real part of the result as a gsl::sf::result object |
| lszi | The imaginary part of the result as a gsl::sf::result object |
Definition at line 99 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_complex_psi_e().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
| x | Real part of complex number |
| y | Imaginary part of complex number |
| result_re | Real part of result as gsl::sf::result object |
| result_im | Imaginary part of result as gsl::sf::result object |
Definition at line 117 of file sf_psi.hpp.
C++ version of gsl_sf_complex_sin_e().
| zr | Real part of a complex number |
| zi | Imaginary part of a complex number |
| szr | The real part of the result as a gsl::sf::result object |
| szi | The imaginary part of the result as a gsl::sf::result object |
Definition at line 79 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_complex_spence_xy_e().
Spence integral; spence(s) := Li_2(1-s)
| x | A real number |
| y | A real number |
| real_sp | Real part of result as gsl::sf::result object |
| imag_sp | Imaginary part of result as gsl::sf::result object |
Definition at line 84 of file sf_dilog.hpp.
|
inline |
C++ version of gsl_sf_conicalP_0().
Conical Function P^{0}_{-1/2 + I lambda}(x)
x > -1.0
| lambda | A real value |
| x | A real value |
Definition at line 491 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_0_e().
Conical Function P^{0}_{-1/2 + I lambda}(x)
x > -1.0
| lambda | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 479 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_1().
Conical Function P^{1}_{-1/2 + I lambda}(x)
x > -1.0
| lambda | A real value |
| x | A real value |
Definition at line 516 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_1_e().
Conical Function P^{1}_{-1/2 + I lambda}(x)
x > -1.0
| lambda | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 504 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_cyl_reg().
Regular Cylindrical Conical Function P^{-m}_{-1/2 + I lambda}(x)
x > -1.0, m >= -1
| m | An integer |
| lambda | A real value |
| x | A real value |
Definition at line 570 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_cyl_reg_e().
Regular Cylindrical Conical Function P^{-m}_{-1/2 + I lambda}(x)
x > -1.0, m >= -1
| m | An integer |
| lambda | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 557 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_half().
Irregular Spherical Conical Function P^{1/2}_{-1/2 + I lambda}(x)
x > -1.0
| lambda | A real value |
| x | A real value |
Definition at line 441 of file sf_legendre.hpp.
|
inline |
Definition at line 429 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_mhalf().
Regular Spherical Conical Function P^{-1/2}_{-1/2 + I lambda}(x)
x > -1.0
| lambda | A real value |
| x | A real value |
Definition at line 466 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_mhalf_e().
Regular Spherical Conical Function P^{-1/2}_{-1/2 + I lambda}(x)
x > -1.0
| lambda | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 454 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_sph_reg().
Regular Spherical Conical Function P^{-1/2-l}_{-1/2 + I lambda}(x)
x > -1.0, l >= -1
| l | An integer |
| lambda | A real value |
| x | A real value |
Definition at line 543 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_conicalP_sph_reg_e().
Regular Spherical Conical Function P^{-1/2-l}_{-1/2 + I lambda}(x)
x > -1.0, l >= -1
| l | An integer |
| lambda | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 530 of file sf_legendre.hpp.
|
inline |
C++ version of gsl_sf_cos().
| x | A real value |
Definition at line 54 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_cos_e().
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 48 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_cos_err_e().
Cos(x) for quantity with an associated error.
| x | A real value |
| dx | The error in x |
| result | The result as a gsl::sf::result object |
Definition at line 184 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_cos_pi().
Cosine function
| x | A real number |
Definition at line 58 of file sf_sincos_pi.hpp.
|
inline |
C++ version of gsl_sf_cos_pi_e().
Cosine function
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 51 of file sf_sincos_pi.hpp.
|
inline |
C++ version of gsl_sf_coupling_3j().
| two_ja | Coupling coefficient in half-integer units |
| two_jb | Coupling coefficient in half-integer units |
| two_jc | Coupling coefficient in half-integer units |
| two_ma | Coupling coefficient in half-integer units |
| two_mb | Coupling coefficient in half-integer units |
| two_mc | Coupling coefficient in half-integer units |
Definition at line 53 of file sf_coupling.hpp.
|
inline |
C++ version of gsl_sf_coupling_3j().
| two_ja | Coupling coefficient in half-integer units |
| two_jb | Coupling coefficient in half-integer units |
| two_jc | Coupling coefficient in half-integer units |
| two_ma | Coupling coefficient in half-integer units |
| two_mb | Coupling coefficient in half-integer units |
| two_mc | Coupling coefficient in half-integer units |
| result | The result as a gsl::sf::result object |
Definition at line 40 of file sf_coupling.hpp.
|
inline |
C++ version of gsl_sf_coupling_6j().
| two_ja | Coupling coefficient in half-integer units |
| two_jb | Coupling coefficient in half-integer units |
| two_jc | Coupling coefficient in half-integer units |
| two_jd | Coupling coefficient in half-integer units |
| two_je | Coupling coefficient in half-integer units |
| two_jf | Coupling coefficient in half-integer units |
Definition at line 79 of file sf_coupling.hpp.
|
inline |
C++ version of gsl_sf_coupling_6j_e().
| two_ja | Coupling coefficient in half-integer units |
| two_jb | Coupling coefficient in half-integer units |
| two_jc | Coupling coefficient in half-integer units |
| two_jd | Coupling coefficient in half-integer units |
| two_je | Coupling coefficient in half-integer units |
| two_jf | Coupling coefficient in half-integer units |
| result | Coupling coefficient in half-integer units |
Definition at line 66 of file sf_coupling.hpp.
|
inline |
C++ version of gsl_sf_coupling_9j().
| two_ja | Coupling coefficient in half-integer units |
| two_jb | Coupling coefficient in half-integer units |
| two_jc | Coupling coefficient in half-integer units |
| two_jd | Coupling coefficient in half-integer units |
| two_je | Coupling coefficient in half-integer units |
| two_jf | Coupling coefficient in half-integer units |
| two_jg | Coupling coefficient in half-integer units |
| two_jh | Coupling coefficient in half-integer units |
| two_ji | Coupling coefficient in half-integer units |
Definition at line 138 of file sf_coupling.hpp.
|
inline |
C++ version of gsl_sf_coupling_9j_e().
| two_ja | Coupling coefficient in half-integer units |
| two_jb | Coupling coefficient in half-integer units |
| two_jc | Coupling coefficient in half-integer units |
| two_jd | Coupling coefficient in half-integer units |
| two_je | Coupling coefficient in half-integer units |
| two_jf | Coupling coefficient in half-integer units |
| two_jg | Coupling coefficient in half-integer units |
| two_jh | Coupling coefficient in half-integer units |
| two_ji | Coupling coefficient in half-integer units |
| result | The result as a gsl::sf::result object |
Definition at line 121 of file sf_coupling.hpp.
|
inline |
C++ version of gsl_sf_coupling_RacahW().
| two_ja | Coupling coefficient in half-integer units |
| two_jb | Coupling coefficient in half-integer units |
| two_jc | Coupling coefficient in half-integer units |
| two_jd | Coupling coefficient in half-integer units |
| two_je | Coupling coefficient in half-integer units |
| two_jf | Coupling coefficient in half-integer units |
Definition at line 105 of file sf_coupling.hpp.
|
inline |
C++ version of gsl_sf_coupling_RacahW_e().
| two_ja | Coupling coefficient in half-integer units |
| two_jb | Coupling coefficient in half-integer units |
| two_jc | Coupling coefficient in half-integer units |
| two_jd | Coupling coefficient in half-integer units |
| two_je | Coupling coefficient in half-integer units |
| two_jf | Coupling coefficient in half-integer units |
| result | The result as a gsl::sf::result object |
Definition at line 92 of file sf_coupling.hpp.
|
inline |
C++ version of gsl_sf_dawson().
Dawson's integral:
Exp[-x^2] Integral[ Exp[t^2], {t,0,x}]
| x | A real number |
Definition at line 47 of file sf_dawson.hpp.
|
inline |
C++ version of gsl_sf_dawson_e().
Dawson's integral:
Exp[-x^2] Integral[ Exp[t^2], {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 38 of file sf_dawson.hpp.
|
inline |
C++ version of gsl_sf_debye_1().
D_1(x) := n/x^n Integrate[t^1/(e^t - 1), {t,0,x}]
| x | A real number |
Definition at line 43 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_1_e().
D_1(x) := 1/x Integrate[t/(e^t - 1), {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 36 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_2().
D_2(x) := 2/x^2 Integrate[t^2/(e^t - 1), {t,0,x}]
| x | A real number |
Definition at line 58 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_2_e().
D_2(x) := 2/x^2 Integrate[t^2/(e^t - 1), {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 51 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_3().
D_3(x) := 3/x^3 Integrate[t^3/(e^t - 1), {t,0,x}]
| x | A real number |
Definition at line 73 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_3_e().
D_3(x) := 3/x^3 Integrate[t^3/(e^t - 1), {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 66 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_4().
D_4(x) := 4/x^4 Integrate[t^4/(e^t - 1), {t,0,x}]
| x | A real number |
Definition at line 88 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_4_e().
D_4(x) := 4/x^4 Integrate[t^4/(e^t - 1), {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 81 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_5().
D_5(x) := 5/x^5 Integrate[t^5/(e^t - 1), {t,0,x}]
| x | A real number |
Definition at line 103 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_5_e().
D_5(x) := 5/x^5 Integrate[t^5/(e^t - 1), {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 96 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_6().
D_6(x) := 6/x^6 Integrate[t^6/(e^t - 1), {t,0,x}]
| x | A real number |
Definition at line 118 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_debye_6_e().
D_6(x) := 6/x^6 Integrate[t^6/(e^t - 1), {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 111 of file sf_debye.hpp.
|
inline |
C++ version of gsl_sf_dilog().
Real part of DiLogarithm(x), for real argument. In Lewin's notation, this is Li_2(x).
Li_2(x) = - Re[ Integrate[ Log[1-s] / s, {s, 0, x}] ]
| x | A real number |
Definition at line 49 of file sf_dilog.hpp.
|
inline |
C++ version of gsl_sf_dilog().
Real part of DiLogarithm(x), for real argument. In Lewin's notation, this is Li_2(x).
Li_2(x) = - Re[ Integrate[ Log[1-s] / s, {s, 0, x}] ]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 39 of file sf_dilog.hpp.
|
inline |
C++ version of gsl_sf_doublefact().
n!! = n(n-2)(n-4) ...
| n | An integer |
Definition at line 207 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_doublefact_e().
n!! = n(n-2)(n-4) ...
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 199 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_elljac_e().
Jacobian elliptic functions sn, dn, cn, by descending Landen transformations
| u | A real number |
| m | A real number |
| sn | A real number |
| cn | A real number |
| dn | A real number |
Definition at line 55 of file sf_elljac.hpp.
|
inline |
C++ version of gsl_sf_erf().
Error Function erf(x) := 2/Sqrt[Pi] Integrate[Exp[-t^2], {t,0,x}]
| x | A real number |
Definition at line 77 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_erf_e().
Error Function erf(x) := 2/Sqrt[Pi] Integrate[Exp[-t^2], {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 69 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_erf_Q().
Probability function Q(x) : Abramowitz+Stegun 26.2.3
| x | A real number |
Definition at line 111 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_erf_Q_e().
Probability function Q(x) : Abramowitz+Stegun 26.2.3
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 95 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_erf_Z().
Probability function Z(x) : Abramowitz+Stegun 26.2.1
| x | A real number |
Definition at line 103 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_erf_Z_e().
Probability function Z(x) : Abramowitz+Stegun 26.2.1
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 86 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_erfc().
Complementary Error Function erfc(x) := 2/Sqrt[Pi] Integrate[Exp[-t^2], {t,x,Infinity}]
| x | A real number |
Definition at line 45 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_erfc_e().
Complementary Error Function erfc(x) := 2/Sqrt[Pi] Integrate[Exp[-t^2], {t,x,Infinity}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 37 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_eta().
Eta Function eta(s) = (1-2^(1-s)) zeta(s)
| s | A real value |
Definition at line 181 of file sf_zeta.hpp.
Referenced by gsl::sf::coulomb::CL_array(), gsl::sf::coulomb::CL_e(), gsl::sf::legendre::H3d(), gsl::sf::legendre::H3d_0(), gsl::sf::legendre::H3d_0_e(), gsl::sf::legendre::H3d_1(), gsl::sf::legendre::H3d_1_e(), gsl::sf::legendre::H3d_array(), gsl::sf::legendre::H3d_e(), gsl::multilarge::linear::lcurve(), gsl::multifit::linear_lcorner(), gsl::multifit::linear_lcorner2(), gsl::multifit::linear_lcurvature(), gsl::multifit::linear_lcurve(), gsl::sf::coulomb::wave_F_array(), gsl::sf::coulomb::wave_FG_array(), gsl::sf::coulomb::wave_FG_e(), gsl::sf::coulomb::wave_FGp_array(), and gsl::sf::coulomb::wave_sphF_array().
|
inline |
C++ version of gsl_sf_eta_e().
Eta Function eta(s) = (1-2^(1-s)) zeta(s)
| s | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 172 of file sf_zeta.hpp.
|
inline |
C++ version of gsl_sf_eta_int().
Eta Function eta(n) = (1-2^(1-n)) zeta(n)
| n | An integer |
Definition at line 163 of file sf_zeta.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_eta_int_e().
Eta Function eta(n) = (1-2^(1-n)) zeta(n)
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 154 of file sf_zeta.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_exp().
Exponential function
| x | A real number |
Definition at line 43 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_e().
Exponential function
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 36 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_e10_e().
Exp(x)
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 51 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_err_e().
Exponentiate a quantity with an associated error.
| x | A real number |
| dx | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 176 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_err_e10_e().
Exponentiate a quantity with an associated error.
| x | A real number |
| dx | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 186 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_mult().
Exponentiate and multiply by a given factor: y * Exp(x)
| x | A real number |
| y | A real number |
Definition at line 70 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_mult_e().
Exponentiate and multiply by a given factor: y * Exp(x)
| x | A real number |
| y | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 61 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_mult_e10_e().
Exponentiate and multiply by a given factor: y * Exp(x)
| x | A real number |
| y | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 80 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_mult_err_e().
Exponentiate and multiply by a given factor: y * Exp(x), for quantities with associated errors.
| x | A real number |
| dx | A real number |
| y | A real number |
| dy | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 199 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exp_mult_err_e10_e().
Exponentiate and multiply by a given factor: y * Exp(x), for quantities with associated errors.
| x | A real number |
| dx | A real number |
| y | A real number |
| dy | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 213 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_expint_3().
Ei_3(x) := Integral[ Exp[-t^3], {t,0,x}]
x >= 0.0
| x | A real number |
Definition at line 247 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_3_e().
Ei_3(x) := Integral[ Exp[-t^3], {t,0,x}]
x >= 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 238 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_E1().
E_1(x) := Re[ Integrate[ Exp[-xt]/t, {t,1,Infinity}] ]
x != 0.0
| x | A real number |
Definition at line 47 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_E1_e().
E_1(x) := Re[ Integrate[ Exp[-xt]/t, {t,1,Infinity}] ]
x != 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 38 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_E1_scaled().
E_1_scaled(x) := exp(x) E_1(x)
x != 0.0
| x | A real number |
Definition at line 108 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_E1_scaled_e().
E_1_scaled(x) := exp(x) E_1(x)
x != 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 98 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_E2().
E_2(x) := Re[ Integrate[ Exp[-xt]/t^2, {t,1,Infinity}] ]
x != 0.0
| x | A real number |
Definition at line 66 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_E2_e().
E_2(x) := Re[ Integrate[ Exp[-xt]/t^2, {t,1,Infinity}] ]
x != 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 57 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_E2_scaled().
E_2_scaled(x) := exp(x) E_2(x)
x != 0.0
| x | A real number |
Definition at line 128 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_E2_scaled_e().
E_2_scaled(x) := exp(x) E_2(x)
x != 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 118 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_Ei().
Ei(x) := - PV Integrate[ Exp[-t]/t, {t,-x,Infinity}] := PV Integrate[ Exp[t]/t, {t,-Infinity,x}]
x != 0.0
| x | A real number |
Definition at line 174 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_Ei_e().
Ei(x) := - PV Integrate[ Exp[-t]/t, {t,-x,Infinity}] := PV Integrate[ Exp[t]/t, {t,-Infinity,x}]
x != 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 163 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_Ei_scaled().
Ei_scaled(x) := exp(-x) Ei(x)
x != 0.0
| x | A real number |
Definition at line 194 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_Ei_scaled_e().
Ei_scaled(x) := exp(-x) Ei(x)
x != 0.0
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 184 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_expint_En().
E_n(x) := Re[ Integrate[ Exp[-xt]/t^n, {t,1,Infinity}] ]
x != 0.0
| n | An integer |
| x | A real number |
Definition at line 88 of file sf_expint.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_expint_En_e().
E_n(x) := Re[ Integrate[ Exp[-xt]/t^n, {t,1,Infinity}] ]
x != 0.0
| n | An integer |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 77 of file sf_expint.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_expint_En_scaled().
E_n_scaled(x) := exp(x) E_n(x)
x != 0.0
| n | An integer |
| x | A real number |
Definition at line 151 of file sf_expint.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_expint_En_scaled_e().
E_n_scaled(x) := exp(x) E_n(x)
x != 0.0
| n | An integer |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 140 of file sf_expint.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_expm1().
exp(x)-1
| x | A real number |
Definition at line 97 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_expm1_e().
exp(x)-1
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 89 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exprel().
(exp(x)-1)/x = 1 + x/2 + x^2/(2*3) + x^3/(2*3*4) + ...
| x | A real number |
Definition at line 113 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exprel_2().
2(exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + ...
| x | A real number |
Definition at line 129 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exprel_2_e().
2(exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + ...
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 121 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exprel_e().
(exp(x)-1)/x = 1 + x/2 + x^2/(2*3) + x^3/(2*3*4) + ...
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 105 of file sf_exp.hpp.
|
inline |
C++ version of gsl_sf_exprel_n().
Similarly for the N-th generalization of exprel_2. The so-called N-relative exponential
exprel_N(x) = N!/x^N (exp(x) - Sum[x^k/k!, {k,0,N-1}]) = 1 + x/(N+1) + x^2/((N+1)(N+2)) + ... = 1F1(1,1+N,x)
| n | A real number |
| x | A real number |
Definition at line 157 of file sf_exp.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_exprel_n_CF_e().
| n | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 166 of file sf_exp.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_exprel_n_e().
Similarly for the N-th generalization of exprel_2. The so-called N-relative exponential
exprel_N(x) = N!/x^N (exp(x) - Sum[x^k/k!, {k,0,N-1}]) = 1 + x/(N+1) + x^2/((N+1)(N+2)) + ... = 1F1(1,1+N,x)
| n | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 143 of file sf_exp.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_fact().
n!
| n | An integer |
Definition at line 191 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_fact_e().
n!
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 183 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_fermi_dirac_0().
Complete integral F_0(x) = ln(1 + e^x)
| x | A real number |
Definition at line 61 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_0_e().
Complete integral F_0(x) = ln(1 + e^x)
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 53 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_1().
F_1(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
Definition at line 78 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_1_e().
F_1(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 70 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_2().
F_2(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
Definition at line 95 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_2_e().
F_2(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 87 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_3half().
F_{3/2}(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
Definition at line 165 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_3half_e().
F_{3/2}(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 157 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_half().
F_{1/2}(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
Definition at line 148 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_half_e().
F_{1/2}(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 140 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_inc_0().
Incomplete integral F_0(x,b) = ln(1 + e^(b-x)) - (b-x)
| x | A real number |
| b | A real number |
Definition at line 184 of file sf_fermi_dirac.hpp.
References gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_fermi_dirac_inc_0_e().
Incomplete integral F_0(x,b) = ln(1 + e^(b-x)) - (b-x)
| x | A real number |
| b | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 175 of file sf_fermi_dirac.hpp.
References gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_fermi_dirac_int().
F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| j | An integer |
| x | A real number |
Definition at line 114 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_int_e().
F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| j | An integer |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 105 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_m1().
Complete integral F_{-1}(x) = e^x / (1 + e^x)
| x | A real number |
Definition at line 44 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_m1_e().
Complete integral F_{-1}(x) = e^x / (1 + e^x)
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 36 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_mhalf().
F_{-1/2}(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
Definition at line 131 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_fermi_dirac_mhalf_e().
F_{-1/2}(x): F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 123 of file sf_fermi_dirac.hpp.
|
inline |
C++ version of gsl_sf_gamma().
Gamma(x), x not a negative integer Uses real Lanczos method.
| x | A real number |
Definition at line 94 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_gamma_e().
Gamma(x), x not a negative integer Uses real Lanczos method.
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 85 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_gamma_inc().
Non-normalized Incomplete Gamma Function
Gamma(a,x) := Integral[ t^(a-1) e^(-t), {t,x,Infinity} ]
x >= 0.0 Gamma(a, 0) := Gamma(a)
| a | A real number |
| x | A real number |
Definition at line 472 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_gamma_inc_e().
Non-normalized Incomplete Gamma Function
Gamma(a,x) := Integral[ t^(a-1) e^(-t), {t,x,Infinity} ]
x >= 0.0 Gamma(a, 0) := Gamma(a)
| a | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 458 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_gamma_inc_P().
Complementary Normalized Incomplete Gamma Function
P(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,0,x} ]
a > 0, x >= 0
| a | A real number |
| x | A real number |
Definition at line 443 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_gamma_inc_P_e().
Complementary Normalized Incomplete Gamma Function
P(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,0,x} ]
a > 0, x >= 0
| a | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 430 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_gamma_inc_Q().
Normalized Incomplete Gamma Function
Q(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,x,Infinity} ]
a >= 0, x >= 0 Q(a,0) := 1 Q(0,x) := 0, x != 0
| a | A real number |
| x | A real number |
Definition at line 416 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_gamma_inc_Q_e().
Normalized Incomplete Gamma Function
Q(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,x,Infinity} ]
a >= 0, x >= 0 Q(a,0) := 1 Q(0,x) := 0, x != 0
| a | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 401 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_gammainv().
1/Gamma(x) Uses real Lanczos method.
| x | A real number |
Definition at line 132 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_gammainv_e().
1/Gamma(x) Uses real Lanczos method.
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 123 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_gammastar().
Regulated Gamma Function, x > 0 Gamma^*(x) = Gamma(x)/(Sqrt[2Pi] x^(x-1/2) exp(-x)) = (1 + 1/(12x) + ...), x->Inf
| x | A real number |
Definition at line 114 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_gammastar_e().
Regulated Gamma Function, x > 0 Gamma^*(x) = Gamma(x)/(Sqrt[2Pi] x^(x-1/2) exp(-x)) = (1 + 1/(12x) + ...), x->Inf
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 104 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_gegenpoly_1().
| lambda | A real value greater than -0.5 |
| x | A real value |
Definition at line 62 of file sf_gegenbauer.hpp.
|
inline |
C++ version of gsl_sf_gegenpoly_1_e().
| lambda | A real value greater than -0.5 |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 36 of file sf_gegenbauer.hpp.
|
inline |
C++ version of gsl_sf_gegenpoly_2().
| lambda | A real value greater than -0.5 |
| x | A real value |
Definition at line 70 of file sf_gegenbauer.hpp.
|
inline |
C++ version of gsl_sf_gegenpoly_2_e().
| lambda | A real value greater than -0.5 |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 45 of file sf_gegenbauer.hpp.
|
inline |
C++ version of gsl_sf_gegenpoly_3().
| lambda | A real value greater than -0.5 |
| x | A real value |
Definition at line 78 of file sf_gegenbauer.hpp.
|
inline |
C++ version of gsl_sf_gegenpoly_3_e().
| lambda | A real value greater than -0.5 |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 54 of file sf_gegenbauer.hpp.
|
inline |
C++ version of gsl_sf_gegenpoly_array().
| nmax | A nonnegative integer |
| lambda | A real value greater than -0.5 |
| x | A real value |
| result_array | An array of size nmax + 1 |
Definition at line 121 of file sf_gegenbauer.hpp.
|
inline |
C++ version of gsl_sf_gegenpoly_n().
| n | A nonnegative integer |
| lambda | A real value greater than -0.5 |
| x | A real value |
Definition at line 97 of file sf_gegenbauer.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_gegenpoly_n_e().
| n | A nonnegative integer |
| lambda | A real value greater than -0.5 |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 88 of file sf_gegenbauer.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_hazard().
Hazard function, also known as the inverse Mill's ratio.
H(x) := Z(x)/Q(x) = Sqrt[2/Pi] Exp[-x^2 / 2] / Erfc[x/Sqrt[2]]
| x | A real number |
Definition at line 134 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_hazard_e().
Hazard function, also known as the inverse Mill's ratio.
H(x) := Z(x)/Q(x) = Sqrt[2/Pi] Exp[-x^2 / 2] / Erfc[x/Sqrt[2]]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 123 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_hydrogenicR().
R_n := norm exp(-Z r/n) (2Z/n)^l Laguerre[n-l-1, 2l+1, 2Z/n r] normalization such that psi(n,l,r) = R_n Y_{lm}
| n | An integer |
| l | An integer |
| Z | A real value |
| r | A real value |
Definition at line 73 of file sf_coulomb.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_hydrogenicR_1().
Normalized hydrogenic bound states, radial dependence. R_1 := 2Z sqrt(Z) exp(-Z r)
| Z | A real value |
| r | A real value |
Definition at line 48 of file sf_coulomb.hpp.
|
inline |
C++ version of gsl_sf_hydrogenicR_1().
Normalized hydrogenic bound states, radial dependence. R_1 := 2Z sqrt(Z) exp(-Z r)
| Z | A real value |
| r | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 38 of file sf_coulomb.hpp.
|
inline |
C++ version of gsl_sf_hydrogenicR_e().
R_n := norm exp(-Z r/n) (2Z/n)^l Laguerre[n-l-1, 2l+1, 2Z/n r] normalization such that psi(n,l,r) = R_n Y_{lm}
| n | An integer |
| l | an integer |
| Z | A real value |
| r | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 61 of file sf_coulomb.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_hyperg_0F1().
Hypergeometric function related to Bessel functions 0F1[c,x] = Gamma[c] x^(1/2(1-c)) I_{c-1}(2 Sqrt[x]) Gamma[c] (-x)^(1/2(1-c)) J_{c-1}(2 Sqrt[-x])
| c | A real value |
| x | A real value |
Definition at line 52 of file sf_hyperg.hpp.
|
inline |
C++ version of gsl_sf_hyperg_0F1_e().
Hypergeometric function related to Bessel functions 0F1[c,x] = Gamma[c] x^(1/2(1-c)) I_{c-1}(2 Sqrt[x]) Gamma[c] (-x)^(1/2(1-c)) J_{c-1}(2 Sqrt[-x])
| c | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 40 of file sf_hyperg.hpp.
|
inline |
C++ version of gsl_sf_hyperg_1F1().
Confluent hypergeometric function. 1F1[a,b,x] = M(a,b,x)
| a | A real value |
| b | A real value |
| x | A real value |
Definition at line 98 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_1F1_e().
Confluent hypergeometric function. 1F1[a,b,x] = M(a,b,x)
| a | A real value |
| b | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 87 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_1F1_int().
Confluent hypergeometric function for integer parameters. 1F1[m,n,x] = M(m,n,x)
| m | An integer |
| n | An integer |
| x | A real value |
Definition at line 75 of file sf_hyperg.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_hyperg_1F1_int_e().
Confluent hypergeometric function for integer parameters. 1F1[m,n,x] = M(m,n,x)
| m | An integer |
| n | An integer |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 64 of file sf_hyperg.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_hyperg_2F0().
Mysterious hypergeometric function. The series representation is a divergent hypergeometric series. However, for x < 0 we have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)
| a | A real value |
| b | A real value |
| x | A real value |
Definition at line 298 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_2F0_e().
Mysterious hypergeometric function. The series representation is a divergent hypergeometric series. However, for x < 0 we have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)
| a | A real value |
| b | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 286 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_2F1().
Gauss hypergeometric function 2F1[a,b,c,x] |x| < 1
| a | A real value |
| b | A real value |
| c | A real value |
| x | A real value |
Definition at line 193 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_2F1_conj().
Gauss hypergeometric function 2F1[aR + I aI, aR - I aI, c, x]
| aR | Real part of a complex number |
| aI | Imaginary part of a complex number |
| c | A real value |
| x | A real value |
Definition at line 218 of file sf_hyperg.hpp.
|
inline |
C++ version of gsl_sf_hyperg_2F1_conj_e().
Gauss hypergeometric function 2F1[aR + I aI, aR - I aI, c, x]
| aR | Real part of a complex number |
| aI | Imaginary part of a complex number |
| c | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 206 of file sf_hyperg.hpp.
|
inline |
C++ version of gsl_sf_hyperg_2F1_conj_renorm().
Renormalized Gauss hypergeometric function 2F1[aR + I aI, aR - I aI, c, x] / Gamma[c] |x| < 1
| aR | Real part of a complex number |
| aI | Imaginary part of a complex number |
| c | A real value |
| x | A real value |
Definition at line 273 of file sf_hyperg.hpp.
|
inline |
C++ version of gsl_sf_hyperg_2F1_conj_renorm_e().
Renormalized Gauss hypergeometric function 2F1[aR + I aI, aR - I aI, c, x] / Gamma[c] |x| < 1
| aR | Real part of a complex number |
| aI | Imaginary part of a complex number |
| c | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 259 of file sf_hyperg.hpp.
|
inline |
C++ version of gsl_sf_hyperg_2F1_e().
Gauss hypergeometric function 2F1[a,b,c,x] |x| < 1
| a | A real value |
| b | A real value |
| c | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 181 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_2F1_renorm().
Renormalized Gauss hypergeometric function 2F1[a,b,c,x] / Gamma[c] |x| < 1
| a | A real value |
| b | A real value |
| c | A real value |
| x | A real value |
Definition at line 245 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_2F1_renorm_e().
Renormalized Gauss hypergeometric function 2F1[a,b,c,x] / Gamma[c] |x| < 1
| a | A real value |
| b | A real value |
| c | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 232 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_U().
Confluent hypergeometric function. U(a,b,x)
| a | A real value |
| b | A real value |
| x | A real value |
Definition at line 156 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_U_e().
Confluent hypergeometric function. U(a,b,x)
| a | A real value |
| b | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 145 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_U_e10_e().
Confluent hypergeometric function. U(a,b,x)
| a | A real value |
| b | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 168 of file sf_hyperg.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_hyperg_U_int().
Confluent hypergeometric function for integer parameters. U(m,n,x)
| m | An integer |
| n | An integer |
| x | A real value |
Definition at line 121 of file sf_hyperg.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_hyperg_U_int_e().
Confluent hypergeometric function for integer parameters. U(m,n,x)
| m | An integer |
| n | An integer |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 110 of file sf_hyperg.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_hyperg_U_int_e10_e().
Confluent hypergeometric function for integer parameters. U(m,n,x)
| m | An integer |
| n | An integer |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 133 of file sf_hyperg.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_hypot().
| x | A real value |
| y | A real value |
Definition at line 70 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_hypot_e().
| x | A real value |
| y | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 62 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_hzeta().
Hurwitz Zeta Function zeta(s,q) = Sum[ (k+q)^(-s), {k,0,Infinity} ]
s > 1.0, q > 0.0
| s | A real value |
| q | A real value |
Definition at line 144 of file sf_zeta.hpp.
|
inline |
C++ version of gsl_sf_hzeta_e().
Hurwitz Zeta Function zeta(s,q) = Sum[ (k+q)^(-s), {k,0,Infinity} ]
s > 1.0, q > 0.0
| s | A real value |
| q | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 132 of file sf_zeta.hpp.
|
inline |
C++ version of gsl_sf_laguerre_1().
L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
| a | A real value |
| x | A real value |
Definition at line 66 of file sf_laguerre.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_laguerre_1_e().
L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
| a | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 37 of file sf_laguerre.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_laguerre_2().
L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
| a | A real value |
| x | A real value |
Definition at line 74 of file sf_laguerre.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_laguerre_2_e().
L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
| a | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 47 of file sf_laguerre.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_laguerre_3().
L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
| a | A real value |
| x | A real value |
Definition at line 82 of file sf_laguerre.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_laguerre_3_e().
L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x)
| a | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 57 of file sf_laguerre.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_laguerre_n().
Evaluate generalized Laguerre polynomials.
a > -1.0 n >= 0
| n | An integer |
| a | A real value |
| x | A real value |
Definition at line 108 of file sf_laguerre.hpp.
References gsl::sf::mathieu::a(), and gsl::rstat::n().
|
inline |
C++ version of gsl_sf_laguerre_n_e().
Evaluate generalized Laguerre polynomials.
a > -1.0 n >= 0
| n | An integer |
| a | A real value |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 95 of file sf_laguerre.hpp.
References gsl::sf::mathieu::a(), and gsl::rstat::n().
|
inline |
C++ version of gsl_sf_lnbeta().
Logarithm of Beta Function Log[B(a,b)]
a > 0, b > 0
| a | A real number |
| b | A real number |
Definition at line 497 of file sf_gamma.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_lnbeta_e().
Logarithm of Beta Function Log[B(a,b)]
a > 0, b > 0
| a | A real number |
| b | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 485 of file sf_gamma.hpp.
References gsl::sf::mathieu::a(), and gsl::sf::mathieu::b().
|
inline |
C++ version of gsl_sf_lnbeta_sgn_e().
Logarithm of Beta Function Log[B(a,b)]
a > 0, b > 0
| x | A real number |
| y | A real number |
| result | The result as a gsl::sf::result object |
| sgn | Record the sign here |
Definition at line 527 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_lnchoose().
log(n choose m)
| n | An integer |
| m | An integer |
Definition at line 260 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_lnchoose_e().
log(n choose m)
| n | An integer |
| m | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 251 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_lncosh().
Log(Cosh(x))
| x | A real value |
Definition at line 145 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_lncosh_e().
Log(Cosh(x))
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 138 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_lndoublefact().
log(n!!)
| n | An integer |
Definition at line 241 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_lndoublefact_e().
log(n!!)
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 233 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_lnfact().
log(n!) Faster than ln(Gamma(n+1)) for n < 170; defers for larger n.
| n | An integer |
Definition at line 225 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_lnfact_e().
log(n!) Faster than ln(Gamma(n+1)) for n < 170; defers for larger n.
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 216 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_lngamma().
Log[Gamma(x)], x not a negative integer Uses real Lanczos method. Returns the real part of Log[Gamma[x]] when x < 0, i.e. Log[|Gamma[x]|].
| x | A real number |
Definition at line 50 of file sf_gamma.hpp.
C++ version of gsl_sf_lngamma_complex_e().
Log[Gamma(z)] for z complex, z not a negative integer Uses complex Lanczos method. Note that the phase part (arg) is not well-determined when |z| is very large, due to inevitable roundoff in restricting to (-Pi,Pi]. This will raise the GSL_ELOSS exception when it occurs. The absolute value part (lnr), however, never suffers.
Calculates: lnr = log|Gamma(z)| arg = arg(Gamma(z)) in (-Pi, Pi]
| zr | The real part |
| zi | The imaginary part |
| lnr | Result as a gsl::sf::result object |
| arg | Result as a gsl::sf::result object |
Definition at line 151 of file sf_gamma.hpp.
References gsl::cpx::arg().
|
inline |
C++ version of gsl_sf_lngamma_e().
Log[Gamma(x)], x not a negative integer Uses real Lanczos method. Returns the real part of Log[Gamma[x]] when x < 0, i.e. Log[|Gamma[x]|].
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 39 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_lngamma_sgn_e().
Log[Gamma(x)], x not a negative integer Uses real Lanczos method. Returns the real part of Log[Gamma[x]] when x < 0,
| x | A real number |
| result_lg | Result as a gsl::sf::result object |
| sgn | The sign as a return value |
Definition at line 75 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_lnpoch().
Logarithm of Pochhammer (Apell) symbol log( (a)_x ) where (a)_x := Gamma[a + x]/Gamma[a]
a > 0, a+x > 0
| a | A real number |
| x | A real number |
Definition at line 305 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_lnpoch_e().
Logarithm of Pochhammer (Apell) symbol log( (a)_x ) where (a)_x := Gamma[a + x]/Gamma[a]
a > 0, a+x > 0
| a | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 292 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_lnpoch_sgn_e().
Logarithm of Pochhammer (Apell) symbol, with sign information. result = log( |(a)_x| ) sgn = sgn( (a)_x ) where (a)_x := Gamma[a + x]/Gamma[a]
a != neg integer, a+x != neg integer
| a | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
| sgn | Record the sign here |
Definition at line 339 of file sf_gamma.hpp.
|
inline |
C++ version of gsl_sf_lnsinh().
Log(Sinh(x)), x > 0
| x | A real value |
Definition at line 130 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_lnsinh_e().
Log(Sinh(x)), x > 0
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 123 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_log().
| x | A real value |
Definition at line 41 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_log_1plusx().
Log(1 + x)
| x | A real value |
Definition at line 85 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_log_1plusx_e().
Log(1 + x)
| x | A real value |
| result | The result as a gs::sf::result object |
Definition at line 78 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_log_1plusx_mx().
Log(1 + x) - x
| x | A real value |
Definition at line 101 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_log_1plusx_mx_e().
Log(1 + x) - x
| x | A real value |
| result | The result as a gs::sf::result object |
Definition at line 93 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_log_abs().
Log(|x|)
| x | A real value |
Definition at line 57 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_log_abs_e().
Log(|x|)
| x | A real value |
| result | The result as a gs::sf::result object |
Definition at line 49 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_log_e().
| x | A real value |
| result | The result as a gs::sf::result object |
Definition at line 35 of file sf_log.hpp.
|
inline |
C++ version of gsl_sf_log_erfc().
Log Complementary Error Function
| x | A real number |
Definition at line 60 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_log_erfc_e().
Log Complementary Error Function
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 53 of file sf_erf.hpp.
|
inline |
C++ version of gsl_sf_multiply().
| x | A real number |
| y | Another real number |
Definition at line 44 of file sf_elementary.hpp.
|
inline |
C++ version of gsl_sf_multiply_e().
| x | A real number |
| y | Another real number |
| result | The result as a gsl::sf::result object |
Definition at line 36 of file sf_elementary.hpp.
|
inline |
C++ version of gsl_sf_multiply_err_e().
| x | A real number |
| dx | Error in x |
| y | Another real number |
| dy | Error in y |
| result | The result as a gsl::sf::result object |
Definition at line 54 of file sf_elementary.hpp.
|
inline |
C++ version of gsl_sf_poch().
Pochhammer (Apell) symbol (a)_x := Gamma[a + x]/Gamma[x]
a != neg integer, a+x != neg integer
| a | A real number |
| x | A real number |
Definition at line 364 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_poch_e().
Pochhammer (Apell) symbol (a)_x := Gamma[a + x]/Gamma[x]
a != neg integer, a+x != neg integer
| a | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 352 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_pochrel().
Relative Pochhammer (Apell) symbol ((a,x) - 1)/x where (a,x) = (a)_x := Gamma[a + x]/Gamma[a]
| a | A real number |
| x | A real number |
Definition at line 386 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
|
inline |
C++ version of gsl_sf_pochrel_e().
Relative Pochhammer (Apell) symbol ((a,x) - 1)/x where (a,x) = (a)_x := Gamma[a + x]/Gamma[a]
| a | A real number |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 375 of file sf_gamma.hpp.
References gsl::sf::mathieu::a().
C++ version of gsl_sf_polar_to_rect().
| r | A real value (distance) |
| theta | A real value (angle) |
| x | A real value |
| y | A real value |
Definition at line 154 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_pow_int().
| x | A real value |
| n | An integer |
Definition at line 43 of file sf_pow_int.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_pow_int_e().
| x | A real value |
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 36 of file sf_pow_int.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_psi().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Di-Gamma Function psi(x) = psi(0, x)
x != 0.0, -1.0, -2.0, ...
| x | A real value |
Definition at line 82 of file sf_psi.hpp.
|
inline |
C++ version of gsl_sf_psi_1().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Tri-Gamma Function psi^(1)(n)
n > 0
| x | A real value |
Definition at line 168 of file sf_psi.hpp.
|
inline |
C++ version of gsl_sf_psi_1_e().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Tri-Gamma Function psi^(1)(n)
n > 0
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 155 of file sf_psi.hpp.
|
inline |
C++ version of gsl_sf_psi_1_int().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Di-Gamma Function psi(z) for general complex argument z = x + iy
| n | An integer |
Definition at line 141 of file sf_psi.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_psi_1_int_e().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Di-Gamma Function psi(z) for general complex argument z = x + iy
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 130 of file sf_psi.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_psi_1piy().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Di-Gamma Function Re[psi(1 + I y)]
| y | The imaginary part |
Definition at line 105 of file sf_psi.hpp.
|
inline |
C++ version of gsl_sf_psi_1piy_e().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Di-Gamma Function Re[psi(1 + I y)]
| y | The imaginary part |
| result | The result as a gsl::sf::result object |
Definition at line 94 of file sf_psi.hpp.
|
inline |
C++ version of gsl_sf_psi_e().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Di-Gamma Function psi(x) = psi(0, x)
x != 0.0, -1.0, -2.0, ...
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 69 of file sf_psi.hpp.
|
inline |
C++ version of gsl_sf_psi_int().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Di-Gamma Function psi(n) = psi(0,n)
n > 0
| n | An integer |
Definition at line 55 of file sf_psi.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_psi_int_e().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Di-Gamma Function psi(n) = psi(0,n)
n > 0
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 42 of file sf_psi.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_psi_n().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Poly-Gamma Function psi^(n)(x)
n >= 0, x > 0.0
| n | An integer |
| x | A real value |
Definition at line 197 of file sf_psi.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_psi_n_e().
Poly-Gamma Functions
psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x))
Poly-Gamma Function psi^(n)(x)
n >= 0, x > 0.0
| n | An integer |
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 183 of file sf_psi.hpp.
References gsl::rstat::n().
C++ version of gsl_sf_rect_to_polar().
| x | A real value |
| y | A real value |
| r | The distance as a gsl::sf::result object |
| theta | The angle as a gsl::sf::result object |
Definition at line 164 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_result_smash_e().
| re | Object of type result_e10 |
| r | Object of type result |
Definition at line 41 of file sf_result.hpp.
|
inline |
C++ version of gsl_sf_Shi().
Shi(x) := Integrate[ Sinh[t]/t, {t,0,x}]
| x | A real number |
Definition at line 209 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_Shi_e().
Shi(x) := Integrate[ Sinh[t]/t, {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 202 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_Si().
Si(x) := Integrate[ Sin[t]/t, {t,0,x}]
| x | A real number |
Definition at line 262 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_Si_e().
Si(x) := Integrate[ Sin[t]/t, {t,0,x}]
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 255 of file sf_expint.hpp.
|
inline |
C++ version of gsl_sf_sin().
| x | A real value |
Definition at line 41 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_sin_e().
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 35 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_sin_err_e().
Sin(x) for quantity with an associated error.
| x | A real value |
| dx | The error in x |
| result | The result as a gsl::sf::result object |
Definition at line 174 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_sin_pi().
Sine function
| x | A real number |
Definition at line 43 of file sf_sincos_pi.hpp.
|
inline |
C++ version of gsl_sf_sin_pi_e().
Sine function
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 36 of file sf_sincos_pi.hpp.
|
inline |
C++ version of gsl_sf_sinc().
Sinc(x) = sin(pi x) / (pi x)
| x | A real value |
Definition at line 115 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_sinc_e().
Sinc(x) = sin(pi x) / (pi x)
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 108 of file sf_trig.hpp.
|
inline |
C++ version of gsl_sf_synchrotron_1().
First synchrotron function: synchrotron_1(x) = x Integral[ K_{5/3}(t), {t, x, Infinity}]
| x | A real value |
Definition at line 46 of file sf_synchrotron.hpp.
|
inline |
C++ version of gsl_sf_synchrotron_1_e().
First synchrotron function: synchrotron_1(x) = x Integral[ K_{5/3}(t), {t, x, Infinity}]
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 37 of file sf_synchrotron.hpp.
|
inline |
C++ version of gsl_sf_synchrotron_2().
Second synchroton function: synchrotron_2(x) = x * K_{2/3}(x)
| x | A real value |
Definition at line 64 of file sf_synchrotron.hpp.
|
inline |
C++ version of gsl_sf_synchrotron_2_e().
Second synchroton function: synchrotron_2(x) = x * K_{2/3}(x)
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 55 of file sf_synchrotron.hpp.
|
inline |
C++ version of gsl_sf_taylorcoeff().
x^n / n!
x >= 0.0, n >= 0
| n | An integer |
| x | A real number |
Definition at line 174 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_taylorcoeff_e().
x^n / n!
x >= 0.0, n >= 0
| n | An integer |
| x | A real number |
| result | The result as a gsl::sf::result object |
Definition at line 163 of file sf_gamma.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_transport_2().
Transport function: J(2,x) := Integral[ t^2 e^t /(e^t - 1)^2, {t,0,x}]
| x | A real value |
Definition at line 46 of file sf_transport.hpp.
|
inline |
C++ version of gsl_sf_transport_2_e().
Transport function: J(2,x) := Integral[ t^2 e^t /(e^t - 1)^2, {t,0,x}]
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 37 of file sf_transport.hpp.
|
inline |
C++ version of gsl_sf_transport_3().
Transport function: J(3,x) := Integral[ t^3 e^t /(e^t - 1)^2, {t,0,x}]
| x | A real value |
Definition at line 64 of file sf_transport.hpp.
|
inline |
C++ version of gsl_sf_transport_3_e().
Transport function: J(3,x) := Integral[ t^3 e^t /(e^t - 1)^2, {t,0,x}]
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 55 of file sf_transport.hpp.
|
inline |
C++ version of gsl_sf_transport_4().
Transport function: J(4,x) := Integral[ t^4 e^t /(e^t - 1)^2, {t,0,x}]
| x | A real value |
Definition at line 82 of file sf_transport.hpp.
|
inline |
C++ version of gsl_sf_transport_4_e().
Transport function: J(4,x) := Integral[ t^4 e^t /(e^t - 1)^2, {t,0,x}]
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 73 of file sf_transport.hpp.
|
inline |
C++ version of gsl_sf_transport_5().
Transport function: J(5,x) := Integral[ t^5 e^t /(e^t - 1)^2, {t,0,x}]
| x | A real value |
Definition at line 100 of file sf_transport.hpp.
|
inline |
C++ version of gsl_sf_transport_5_e().
Transport function: J(5,x) := Integral[ t^5 e^t /(e^t - 1)^2, {t,0,x}]
| x | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 91 of file sf_transport.hpp.
|
inline |
C++ version of gsl_sf_zeta().
Riemann Zeta Function zeta(x) = Sum[ k^(-s), {k,1,Infinity} ], s != 1.0
s != 1.0
| s | A real value |
Definition at line 72 of file sf_zeta.hpp.
Referenced by gsl::ran::lognormal(), gsl::cdf::lognormal_P(), gsl::ran::lognormal_pdf(), gsl::cdf::lognormal_Pinv(), gsl::cdf::lognormal_Q(), and gsl::cdf::lognormal_Qinv().
|
inline |
C++ version of gsl_sf_zeta_e().
Riemann Zeta Function zeta(x) = Sum[ k^(-s), {k,1,Infinity} ], s != 1.0
s != 1.0
| s | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 61 of file sf_zeta.hpp.
|
inline |
C++ version of gsl_sf_zeta_int().
Riemann Zeta Function zeta(n) = Sum[ k^(-n), {k,1,Infinity} ]
n=integer, n != 1
| n | An integer |
Definition at line 50 of file sf_zeta.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_zeta_int_e().
Riemann Zeta Function zeta(n) = Sum[ k^(-n), {k,1,Infinity} ]
n=integer, n != 1
| n | An integer |
| result | The result as a gsl::sf::result object |
Definition at line 39 of file sf_zeta.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_zetam1().
Riemann Zeta Function minus 1 useful for evaluating the fractional part of Riemann zeta for large argument
s != 1.0
| s | A real value |
Definition at line 96 of file sf_zeta.hpp.
|
inline |
C++ version of gsl_sf_zetam1_e().
Riemann Zeta Function minus 1 useful for evaluating the fractional part of Riemann zeta for large argument
s != 1.0
| s | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 84 of file sf_zeta.hpp.
|
inline |
C++ version of gsl_sf_zetam1_int().
Riemann Zeta Function minus 1 for integer arg useful for evaluating the fractional part of Riemann zeta for large argument
s != 1.0
| s | A real value |
Definition at line 120 of file sf_zeta.hpp.
|
inline |
C++ version of gsl_sf_zetam1_int_e().
Riemann Zeta Function minus 1 for integer arg useful for evaluating the fractional part of Riemann zeta for large argument
s != 1.0
| s | A real value |
| result | The result as a gsl::sf::result object |
Definition at line 108 of file sf_zeta.hpp.
| double const gsl::sf::DOUBLEFACT_NMAX = GSL_SF_DOUBLEFACT_NMAX |
The maximum n such that doublefact(n) does not give an overflow.
Definition at line 592 of file sf_gamma.hpp.
| double const gsl::sf::FACT_NMAX = GSL_SF_FACT_NMAX |
The maximum n such that fact(n) does not give an overflow.
Definition at line 588 of file sf_gamma.hpp.
| double const gsl::sf::GAMMA_XMAX = GSL_SF_GAMMA_XMAX |
The maximum x such that gamma(x) is not considered an overflow.
Definition at line 584 of file sf_gamma.hpp.