|
ccgsl 2.7.2
C++wrappersforGnuScientificLibrary
|
Namespace for elliptic integrals. More...
Functions | |
| int | Kcomp_e (double k, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_Kcomp_e(). More... | |
| double | Kcomp (double k, mode_t mode) |
| C++ version of gsl_sf_ellint_Kcomp(). More... | |
| int | Ecomp_e (double k, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_Ecomp_e(). More... | |
| double | Ecomp (double k, mode_t mode) |
| C++ version of gsl_sf_ellint_Ecomp(). More... | |
| int | Pcomp_e (double k, double n, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_Pcomp_e(). More... | |
| double | Pcomp (double k, double n, mode_t mode) |
| C++ version of gsl_sf_ellint_Pcomp(). More... | |
| int | Dcomp_e (double k, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_Dcomp_e(). More... | |
| double | Dcomp (double k, mode_t mode) |
| C++ version of gsl_sf_ellint_Dcomp(). More... | |
| int | F_e (double phi, double k, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_F_e(). More... | |
| double | F (double phi, double k, mode_t mode) |
| C++ version of gsl_sf_ellint_F(). More... | |
| int | E_e (double phi, double k, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_E_e(). More... | |
| double | E (double phi, double k, mode_t mode) |
| C++ version of gsl_sf_ellint_E(). More... | |
| int | P_e (double phi, double k, double n, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_P_e(). More... | |
| double | P (double phi, double k, double n, mode_t mode) |
| C++ version of gsl_sf_ellint_P(). More... | |
| int | D_e (double phi, double k, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_D_e(). More... | |
| double | D (double phi, double k, mode_t mode) |
| C++ version of gsl_sf_ellint_D(). More... | |
| int | RC_e (double x, double y, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_RC_e(). More... | |
| double | RC (double x, double y, mode_t mode) |
| C++ version of gsl_sf_ellint_RC(). More... | |
| int | RD_e (double x, double y, double z, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_RD_e(). More... | |
| double | RD (double x, double y, double z, mode_t mode) |
| C++ version of gsl_sf_ellint_RD(). More... | |
| int | RF_e (double x, double y, double z, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_RF_e(). More... | |
| double | RF (double x, double y, double z, mode_t mode) |
| C++ version of gsl_sf_ellint_RF(). More... | |
| int | RJ_e (double x, double y, double z, double p, mode_t mode, result &result) |
| C++ version of gsl_sf_ellint_RJ_e(). More... | |
| double | RJ (double x, double y, double z, double p, mode_t mode) |
| C++ version of gsl_sf_ellint_RJ(). More... | |
Namespace for elliptic integrals.
|
inline |
C++ version of gsl_sf_ellint_D().
D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0)
| phi | A real number |
| k | A real number |
| mode | The mode |
Definition at line 203 of file sf_ellint.hpp.
Referenced by gsl::linalg::balance_accum(), gsl::linalg::balance_columns(), gsl::linalg::balance_matrix(), gsl::linalg::cholesky_decomp_unit(), gsl::linalg::ldlt_band_unpack(), and gsl::linalg::QR_UD_decomp().
C++ version of gsl_sf_ellint_D_e().
D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0)
| phi | A real number |
| k | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 193 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_Dcomp().
| k | A real number |
| mode | The mode |
Definition at line 117 of file sf_ellint.hpp.
C++ version of gsl_sf_ellint_Dcomp_e().
| k | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 109 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_E().
E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
| phi | A real number |
| k | A real number |
| mode | The mode |
Definition at line 159 of file sf_ellint.hpp.
C++ version of gsl_sf_ellint_E_e().
E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
| phi | A real number |
| k | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 149 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_Ecomp().
Legendre form of complete elliptic integrals
E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]
| k | A real number |
| mode | The mode |
Definition at line 81 of file sf_ellint.hpp.
C++ version of gsl_sf_ellint_Ecomp_e().
Legendre form of complete elliptic integrals
E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]
| k | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 69 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_F().
F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
| phi | A real number |
| k | A real number |
| mode | The mode |
Definition at line 138 of file sf_ellint.hpp.
Referenced by gsl::movstat::workspace::apply(), gsl::movstat::apply(), gsl::multiroot::fdjacobian(), gsl::fn_eval(), gsl::fn_fdf_eval_df(), gsl::fn_fdf_eval_f(), and gsl::sf::coulomb::wave_FG_e().
C++ version of gsl_sf_ellint_F_e().
F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
| phi | A real number |
| k | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 128 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_Kcomp().
Legendre form of complete elliptic integrals
K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]
| k | A real number |
| mode | The mode |
Definition at line 56 of file sf_ellint.hpp.
C++ version of gsl_sf_ellint_Kcomp_e().
Legendre form of complete elliptic integrals
K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]
| k | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 44 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_P().
P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
| phi | A real number |
| k | A real number |
| n | A real number |
| mode | The mode |
Definition at line 182 of file sf_ellint.hpp.
References gsl::rstat::n().
Referenced by gsl::cdf::beta_Pinv(), gsl::cdf::cauchy_Pinv(), gsl::cdf::chisq_Pinv(), gsl::ran::discrete_t::discrete_t(), gsl::blas::drotm(), gsl::blas::drotmg(), gsl::cdf::exponential_Pinv(), gsl::cdf::fdist_Pinv(), gsl::cdf::flat_Pinv(), gsl::cdf::gamma_Pinv(), gsl::cdf::gaussian_Pinv(), gsl::cdf::gumbel1_Pinv(), gsl::cdf::gumbel2_Pinv(), gsl::cdf::laplace_Pinv(), gsl::cdf::logistic_Pinv(), gsl::cdf::lognormal_Pinv(), gsl::cdf::pareto_Pinv(), gsl::cdf::rayleigh_Pinv(), gsl::blas::srotm(), gsl::blas::srotmg(), gsl::cdf::tdist_Pinv(), gsl::cdf::ugaussian_Pinv(), and gsl::cdf::weibull_Pinv().
C++ version of gsl_sf_ellint_P_e().
P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
| phi | A real number |
| k | A real number |
| n | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 171 of file sf_ellint.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_ellint_Pcomp().
| k | A real number |
| n | A real number |
| mode | The mode |
Definition at line 100 of file sf_ellint.hpp.
References gsl::rstat::n().
C++ version of gsl_sf_ellint_Pcomp_e().
| k | A real number |
| n | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 91 of file sf_ellint.hpp.
References gsl::rstat::n().
|
inline |
C++ version of gsl_sf_ellint_RC().
Carlson's symmetric basis of functions
RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}]
| x | A real number |
| y | A real number |
| mode | The mode |
Definition at line 228 of file sf_ellint.hpp.
C++ version of gsl_sf_ellint_RC_e().
Carlson's symmetric basis of functions
RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}]
| x | A real number |
| y | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 216 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_RD().
Carlson's symmetric basis of functions
RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]
| x | A real number |
| y | A real number |
| z | A real number |
| mode | The mode |
Definition at line 255 of file sf_ellint.hpp.
C++ version of gsl_sf_ellint_RD_e().
Carlson's symmetric basis of functions
RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]
| x | A real number |
| y | A real number |
| z | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 242 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_RF().
Carlson's symmetric basis of functions
RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]
| x | A real number |
| y | A real number |
| z | A real number |
| mode | The mode |
Definition at line 282 of file sf_ellint.hpp.
C++ version of gsl_sf_ellint_RF_e().
Carlson's symmetric basis of functions
RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]
| x | A real number |
| y | A real number |
| z | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 269 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_RJ().
Carlson's symmetric basis of functions
RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]
| x | A real number |
| y | A real number |
| z | A real number |
| p | A real number |
| mode | The mode |
Definition at line 311 of file sf_ellint.hpp.
|
inline |
C++ version of gsl_sf_ellint_RJ_e().
Carlson's symmetric basis of functions
RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]
| x | A real number |
| y | A real number |
| z | A real number |
| p | A real number |
| mode | The mode |
| result | The result as a gsl::sf::result object |
Definition at line 297 of file sf_ellint.hpp.