ccgsl 2.7.2
C++wrappersforGnuScientificLibrary
gsl::sf::ellint Namespace Reference

Namespace for elliptic integrals. More...

Functions

int Kcomp_e (double k, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_Kcomp_e(). More...
 
double Kcomp (double k, mode_t mode)
 C++ version of gsl_sf_ellint_Kcomp(). More...
 
int Ecomp_e (double k, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_Ecomp_e(). More...
 
double Ecomp (double k, mode_t mode)
 C++ version of gsl_sf_ellint_Ecomp(). More...
 
int Pcomp_e (double k, double n, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_Pcomp_e(). More...
 
double Pcomp (double k, double n, mode_t mode)
 C++ version of gsl_sf_ellint_Pcomp(). More...
 
int Dcomp_e (double k, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_Dcomp_e(). More...
 
double Dcomp (double k, mode_t mode)
 C++ version of gsl_sf_ellint_Dcomp(). More...
 
int F_e (double phi, double k, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_F_e(). More...
 
double F (double phi, double k, mode_t mode)
 C++ version of gsl_sf_ellint_F(). More...
 
int E_e (double phi, double k, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_E_e(). More...
 
double E (double phi, double k, mode_t mode)
 C++ version of gsl_sf_ellint_E(). More...
 
int P_e (double phi, double k, double n, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_P_e(). More...
 
double P (double phi, double k, double n, mode_t mode)
 C++ version of gsl_sf_ellint_P(). More...
 
int D_e (double phi, double k, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_D_e(). More...
 
double D (double phi, double k, mode_t mode)
 C++ version of gsl_sf_ellint_D(). More...
 
int RC_e (double x, double y, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_RC_e(). More...
 
double RC (double x, double y, mode_t mode)
 C++ version of gsl_sf_ellint_RC(). More...
 
int RD_e (double x, double y, double z, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_RD_e(). More...
 
double RD (double x, double y, double z, mode_t mode)
 C++ version of gsl_sf_ellint_RD(). More...
 
int RF_e (double x, double y, double z, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_RF_e(). More...
 
double RF (double x, double y, double z, mode_t mode)
 C++ version of gsl_sf_ellint_RF(). More...
 
int RJ_e (double x, double y, double z, double p, mode_t mode, result &result)
 C++ version of gsl_sf_ellint_RJ_e(). More...
 
double RJ (double x, double y, double z, double p, mode_t mode)
 C++ version of gsl_sf_ellint_RJ(). More...
 

Detailed Description

Namespace for elliptic integrals.

Function Documentation

◆ D()

double gsl::sf::ellint::D ( double  phi,
double  k,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_D().

D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0)

Parameters
phiA real number
kA real number
modeThe mode
Returns
The function value

Definition at line 203 of file sf_ellint.hpp.

Referenced by gsl::linalg::balance_accum(), gsl::linalg::balance_columns(), gsl::linalg::balance_matrix(), gsl::linalg::cholesky_decomp_unit(), gsl::linalg::ldlt_band_unpack(), and gsl::linalg::QR_UD_decomp().

◆ D_e()

int gsl::sf::ellint::D_e ( double  phi,
double  k,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_D_e().

D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0)

Parameters
phiA real number
kA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
Error code on failure

Definition at line 193 of file sf_ellint.hpp.

◆ Dcomp()

double gsl::sf::ellint::Dcomp ( double  k,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_Dcomp().

Parameters
kA real number
modeThe mode
Returns
The function value

Definition at line 117 of file sf_ellint.hpp.

◆ Dcomp_e()

int gsl::sf::ellint::Dcomp_e ( double  k,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_Dcomp_e().

Parameters
kA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
Error code on failure

Definition at line 109 of file sf_ellint.hpp.

◆ E()

double gsl::sf::ellint::E ( double  phi,
double  k,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_E().

E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]

Parameters
phiA real number
kA real number
modeThe mode
Returns
The function value

Definition at line 159 of file sf_ellint.hpp.

◆ E_e()

int gsl::sf::ellint::E_e ( double  phi,
double  k,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_E_e().

E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]

Parameters
phiA real number
kA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
Error code on failure

Definition at line 149 of file sf_ellint.hpp.

◆ Ecomp()

double gsl::sf::ellint::Ecomp ( double  k,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_Ecomp().

Legendre form of complete elliptic integrals

E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]

Parameters
kA real number
modeThe mode
Returns
The function value

Definition at line 81 of file sf_ellint.hpp.

◆ Ecomp_e()

int gsl::sf::ellint::Ecomp_e ( double  k,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_Ecomp_e().

Legendre form of complete elliptic integrals

E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]

Parameters
kA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
GSL_SUCCESS or GSL_EDOM

Definition at line 69 of file sf_ellint.hpp.

◆ F()

double gsl::sf::ellint::F ( double  phi,
double  k,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_F().

F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]

Parameters
phiA real number
kA real number
modeThe mode
Returns
The function value

Definition at line 138 of file sf_ellint.hpp.

Referenced by gsl::movstat::workspace::apply(), gsl::movstat::apply(), gsl::multiroot::fdjacobian(), gsl::fn_eval(), gsl::fn_fdf_eval_df(), gsl::fn_fdf_eval_f(), and gsl::sf::coulomb::wave_FG_e().

◆ F_e()

int gsl::sf::ellint::F_e ( double  phi,
double  k,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_F_e().

F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]

Parameters
phiA real number
kA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
Error code on failure

Definition at line 128 of file sf_ellint.hpp.

◆ Kcomp()

double gsl::sf::ellint::Kcomp ( double  k,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_Kcomp().

Legendre form of complete elliptic integrals

K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]

Parameters
kA real number
modeThe mode
Returns
function value

Definition at line 56 of file sf_ellint.hpp.

◆ Kcomp_e()

int gsl::sf::ellint::Kcomp_e ( double  k,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_Kcomp_e().

Legendre form of complete elliptic integrals

K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}]

Parameters
kA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
GSL_SUCCESS or GSL_EDOM

Definition at line 44 of file sf_ellint.hpp.

◆ P()

double gsl::sf::ellint::P ( double  phi,
double  k,
double  n,
mode_t  mode 
)
inline

◆ P_e()

int gsl::sf::ellint::P_e ( double  phi,
double  k,
double  n,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_P_e().

P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]

Parameters
phiA real number
kA real number
nA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
Error code on failure

Definition at line 171 of file sf_ellint.hpp.

References gsl::rstat::n().

◆ Pcomp()

double gsl::sf::ellint::Pcomp ( double  k,
double  n,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_Pcomp().

Parameters
kA real number
nA real number
modeThe mode
Returns
The function value

Definition at line 100 of file sf_ellint.hpp.

References gsl::rstat::n().

◆ Pcomp_e()

int gsl::sf::ellint::Pcomp_e ( double  k,
double  n,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_Pcomp_e().

Parameters
kA real number
nA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
Error code on failure

Definition at line 91 of file sf_ellint.hpp.

References gsl::rstat::n().

◆ RC()

double gsl::sf::ellint::RC ( double  x,
double  y,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_RC().

Carlson's symmetric basis of functions

RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}]

Parameters
xA real number
yA real number
modeThe mode
Returns
The function value

Definition at line 228 of file sf_ellint.hpp.

◆ RC_e()

int gsl::sf::ellint::RC_e ( double  x,
double  y,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_RC_e().

Carlson's symmetric basis of functions

RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}]

Parameters
xA real number
yA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
GSL_SUCCESS or GSL_EDOM

Definition at line 216 of file sf_ellint.hpp.

◆ RD()

double gsl::sf::ellint::RD ( double  x,
double  y,
double  z,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_RD().

Carlson's symmetric basis of functions

RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]

Parameters
xA real number
yA real number
zA real number
modeThe mode
Returns
The function value

Definition at line 255 of file sf_ellint.hpp.

◆ RD_e()

int gsl::sf::ellint::RD_e ( double  x,
double  y,
double  z,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_RD_e().

Carlson's symmetric basis of functions

RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]

Parameters
xA real number
yA real number
zA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
GSL_SUCCESS or GSL_EDOM

Definition at line 242 of file sf_ellint.hpp.

◆ RF()

double gsl::sf::ellint::RF ( double  x,
double  y,
double  z,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_RF().

Carlson's symmetric basis of functions

RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]

Parameters
xA real number
yA real number
zA real number
modeThe mode
Returns
The function value

Definition at line 282 of file sf_ellint.hpp.

◆ RF_e()

int gsl::sf::ellint::RF_e ( double  x,
double  y,
double  z,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_RF_e().

Carlson's symmetric basis of functions

RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]

Parameters
xA real number
yA real number
zA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
GSL_SUCCESS or GSL_EDOM

Definition at line 269 of file sf_ellint.hpp.

◆ RJ()

double gsl::sf::ellint::RJ ( double  x,
double  y,
double  z,
double  p,
mode_t  mode 
)
inline

C++ version of gsl_sf_ellint_RJ().

Carlson's symmetric basis of functions

RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]

Parameters
xA real number
yA real number
zA real number
pA real number
modeThe mode
Returns
The function value

Definition at line 311 of file sf_ellint.hpp.

◆ RJ_e()

int gsl::sf::ellint::RJ_e ( double  x,
double  y,
double  z,
double  p,
mode_t  mode,
result result 
)
inline

C++ version of gsl_sf_ellint_RJ_e().

Carlson's symmetric basis of functions

RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]

Parameters
xA real number
yA real number
zA real number
pA real number
modeThe mode
resultThe result as a gsl::sf::result object
Returns
GSL_SUCCESS or GSL_EDOM

Definition at line 297 of file sf_ellint.hpp.